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We investigate the aggregation and phase separation of thin, living T. tubifex worms that behave as active
polymers. Randomly dispersed active worms spontaneously aggregate to form compact, highly entangled
blobs, a process similar to polymer phase separation, and for which we observe power-law growth kinetics.
We find that the phase separation of active polymerlike worms does not occur through Ostwald ripening,
but through active motion and coalescence of the phase domains. Interestingly, the growth mechanism
differs from conventional growth by droplet coalescence: the diffusion constant characterizing the random
motion of a worm blob is independent of its size, a phenomenon that can be explained from the fact that the
active random motion arises from the worms at the surface of the blob. This leads to a fundamentally
different phase-separation mechanism that may be unique to active polymers.

DOI: 10.1103/PhysRevLett.124.208006

Driven colloidal particles [1–3], self-propelled bots
[4,5], cells [6,7], animals [8,9], and humans [10] belong
to the field of active matter: interacting agents that extract
energy from the environment to produce sustained motion
or mechanical stresses [3,11,12]. Their collective behavior
is fascinating, and the activity and interactions of the
individual components give rise to highly nontrivial
macroscopic phenomena [13]. Here, we investigate the
spontaneous aggregation and phase separation of active-
polymerlike living worms. At first sight, the phase sepa-
ration of active polymers may seem similar to that of
solutions [14,15] and crystallizing solids [16], for which
detailed theories are available: in both cases, the aggregat-
ing particles move randomly and tend to stick together
when they are in close proximity. As such, one might
expect the phase separation of active particles to involve a
mechanism similar to Ostwald ripening [17], where the
aggregation is driven by the combined effect of diffusion of
the aggregating particles and surface tension of the aggre-
gates. However, recent work has shown that the phase
separation of active particles can involve mechanisms that
rely on the activity [2,3,6,13,18–20], and our results
indicate that this also holds for the phase separation of
active polymers.
The T. tubifex worms that we investigate are active

swimmers and approximately 300 μm thick and 10–40 mm
long (see Supplemental Material [21]). The thermal random
motion of the worms (estimated from the Stokes-Einstein
equation) is negligible compared to their active motion, so
they constitute a good model system for active polymers
[25–30]. When randomly distributed over a volume of
water, the worms aggregate spontaneously (Fig. 1) into

highly entangled “blobs.” In the remainder of this Letter,
we use the term “phase separation” for the final state in
which there are macroscopic domains (i.e., containing large
numbers of worms) of high worm density in a space with
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FIG. 1. Aggregation and phase separation of T. tubifex. (a)–(c)
Snapshots of active-worm aggregation in a 25 × 25 × 2.5 cm
volume at (a) t ¼ 0, (b) 9.5, and (c) 60 min. (d) Snapshots from a
1D experiment in a square tube of 51 × 1 × 1 × 1 cm. (e)–(h)
Close-ups from another experiment at (e) t ¼ 25, (f) 28.5, (g) 29,
and (h) 31.5 min, showing the coalescence of two blobs. See
Supplemental Material [21] for the videos.
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essentially zero worm density. We use “aggregation” to
refer to the growth of these domains from individual
worms. The biological function of this aggregation is to
minimize exposure to dissolved oxygen, high levels of
which are poisonous to tubifex [31]. The worms cling
together by entanglement, which is aided by small bristles
on their bodies [32]. The aggregation is irreversible on the
timescale of the experiment and the worms are submerged
in water, which makes the aggregation different from
motility-induced phase separation [20] and from the
recently studied aggregation of C. elegans, which forms
dynamical bundle-shaped networks kept together mainly
by surface tension of the water around the worms [9]. We
can analyze the aggregation of T. tubifex with relatively
simple methods, which makes these living worms an
excellent system to investigate the phase separation of
active polymers.
In the experiments, we disperse a specific number of

worms in a thermostated water volume and observe their
aggregation in real time by recording videos (see
Supplemental Material [21]). We investigate two geom-
etries: in the simplest, the worms are dispersed in a
25 × 25 × 2.5 cm volume of water. In this geometry, worm

motion is effectively two-dimensional (2D), since the
worms are denser than water and therefore always located
at or close to the bottom of the water volume (Supplemental
Material Fig. S3 [21]). In other experiments, the water
volume is a 51 × 1 × 1 cm channel in which the worms are
confined in an effectively one-dimensional space (1D).
Figures 1(a)–1(c) show snapshots from a typical 2D
experiment, and Fig. 1(d) is from a typical 1D experiment
[21]. In both geometries, as time progresses the worms
form ever larger aggregates until, after about one hour, all
worms are concentrated into a few large aggregates, which
have the shape of a slightly flattened sphere [21], a
compromise between minimum exposed surface and mini-
mum gravitational energy. In the following, we refer to
these worm aggregates as blobs.
The aggregation of the active worms seems similar to

that generally observed for polymer phase separation.
Hence, one might expect that the aggregation occurs
through Ostwald ripening, in which larger aggregates grow
at the cost of smaller ones [33]. This mechanism is driven
by the reduction of the total surface tension with increasing
average blob size, and we do in fact measure a finite
surface tension for the worm blobs [21]. However, closer
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FIG. 2. Phase-separation dynamics. (a) (i) Modulus squared of the Fourier transform and (ii) Fourier power spectrum of the image of
the spatial worm distribution at different times. The q value at which the intensity is maximal shifts to lower values with increasing time
(2D experiment, T ¼ 30°C). (b) Average size hRnDi ∼ q−1max (left axis for 2D experiments and right axis for 1D experiments) as a function
of time, showing approximate power-law behavior with a power of 1=3 for the 2D experiment at all temperatures (circles) and 1=4 for
the 1D experiment at ambient temperature (squares). The solid lines are guides to the eye. (c) Trajectories of a single worm time at a
controlled temperature T. Each solid trace of a different color represents the center-of-mass trajectory of one-hour duration for the same
worm at a different temperature [T ¼ 5, 20, 30 °C; color coding as in (b)]. The origin of all trajectories is set to ðx0; y0Þ ¼ ð0; 0Þ.
(d) Mean square displacement (MSD) as a function of time of ten worms in water at T ¼ 5, 20, 30 °C [same color coding as in (b)]. The
dashed line of slope 1 in the shaded area shows the expected scaling for Brownian motion. The dashed line in the nonshaded area has
slope 2. (e) Diffusion coefficient Dworm of a worm extracted from the MSD(t) as a function of temperature. Each measurement is an
average over ten trajectories of the same worms. (f) Average size of all the 2D experiments at the different temperatures collapsed onto a
single master curve by rescaling the time τ ¼ Dwormt.
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inspection [Figs. 1(e)–1(h)] shows that blobs of all sizes are
growing, and that the growth does not occur by Ostwald
ripening, but rather by the merging of smaller aggregates
into larger ones. Such growth by coalescence of diffusing
droplets has been investigated previously in the context of
the growth of vapor-deposited thin films and of droplets on
a surface [34–36].
To quantify our observations, we characterize the aver-

age blob size hRi as a function of time by taking the 2D
Fourier transform of the images and determining the wave
vector magnitude qmax at which the spectrum reaches its
maximum intensity [Fig. 2(a)]. Since the worm density
in a blob is independent of its size [21], the size of a blob
gives direct information on the number of constituent
worms. With increasing time, q−1max shifts to lower values,
corresponding to an increasing average blob size hRi.
Figure 2(b) shows the average blob size q−1max determined
in this way as a function of time, at several temperatures.
The growth exhibits power-law behavior with hR2Di ∼ t1=3

in the 2D experiments and hR1Di ∼ t1=4 in the 1D experi-
ments, independent of the initial worm concentration
(Supplemental Material Fig. S6 [21]). In addition, we
observe in the 2D experiments that the power-law growth
behavior is independent of temperature.
We also investigate the motion of individual worms by

recording image sequences of single, isolated worms at
different temperatures (see Supplemental Material [21]).
Figure 2(c) shows an example of the center-of-mass
trajectory of an individual worm at various temperatures.
The motion is a random walk with an effective diffusion
constant that increases with temperature, as is confirmed by
extracting the mean square displacement from which we
retrieve the diffusion coefficient [Fig. 2(e)] [21]. By
rescaling the time axis τ ∝ Dwormt all the growth curves
collapse onto a single master curve ∝ τ1=3 [Fig. 2(f)],
confirming that the aggregation kinetics is determined by
the random motion of the worms. Unlike C. elegans which
forms parallel bundles [9], the worms are not aligned but
highly entangled in the blobs [Supplemental Material
Fig. S4(c)], and the probability of two worms coalescing
is independent of the angle between their velocities during
collision [21], probably because their motion is wriggling
rather than slithering.
To shed more light on the observed power-law growth

kinetics, we perform computer simulations of 2D growth
by coalescence of diffusing droplets, using an approach
similar to that of Ref. [35] (see Supplemental Material [21]
for details). We assume that the blobs are spherical and
move randomly in a 2D space, and that two blobs with radii
R1 and R2 at positions r1 and r2 coalesce when jr1 − r2j <
R1 þ R2 to form a new blob with radius R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R3
1 þ R3

2
3
p

at
position r ¼ ðR3

1r1 þ R3
2r2Þ=ðR3

1 þ R3
2Þ. The simulation

starts with a random distribution of monodisperse spheres
with radius 1, which represent the individual worms, in a
2D space of size 200 × 200. At every time step, each

droplet is moved in a random direction by a distance equal
to

ffiffiffiffiffiffiffiffiffiffi

Dblob
p

where Dblob is the diffusion constant.
Figure 3(a) shows snapshots from two simulations

with two different DblobðRÞ functional dependencies, and
Fig. 3(b) shows the time-dependent mass-weighted average
size hRi ¼ P

i R
4
i =

P

i R
3
i , where both summations run

over all the spheres present in the volume (similar results
are obtained when using the number-weighted average, see
Fig. S4 in the Supplemental Material [21]). If we assume
that the effective diffusion constant Dblob of a randomly
moving blob depends on its radius R as Dblob ¼ R−1, as is
the case for blobs undergoing Brownian random motion
(Stokes-Einstein equation) [33], we obtain power-law
growth of the average blob size with an exponent of
∼0.20 [purple circles in Fig. 3(b)]. This exponent is much
smaller than the experimentally observed value of ∼0.3
[Fig. 2(f)]. It may be noted that the exponent obtained from
the simulation is different from that in Ref. [35] because, in
our case, we have conservation of total mass, and so
depletion in the space between the blobs.
We believe that the discrepancy between the simulated

and experimentally observed power-law exponents is due

FIG. 3. Simulation of phase-separation dynamics. (a) Snapshots
of simulated blob growth by coalescence of randomly moving
spherical blobs, with blob-diffusion constant Dblob inversely pro-
portional to the blob radius (top) and independent of blob radius
(bottom). (b) Average blob radius hRi as a function of time obtained
from the simulations. In all cases, the growth follows a power law
(indicated by lines), with exponents of 0.2 and 0.3, respectively.
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to the active motion of the worms. For a blob of active
worms, the effective diffusion constant characterizing the
random motion may not be inversely proportional to the
blob size, as it is for a particle undergoing conventional,
Brownian random motion [33]. To investigate this idea in
more detail, we perform additional experiments in which
we determine the effective diffusion constants of blobs with
different sizes (Fig. 4).
Interestingly, the effective diffusion constant does

not depend on Rblob as Dblob ∝ R−1
blob, but appears to be

independent of the radius of the blob. This means that
the random motion of the worm blobs differs from
conventional, Brownian random motion, where Dblob ¼
kBT=6πηRblob with kB Boltzmann’s constant and η the
viscosity of the surrounding liquid [33]. The difference can
be explained by considering the origin of the random
motion: Brownian random motion of a particle is caused by
the thermal motion of the surrounding molecules, whereas
the random motion of a worm blob is due to the active
motion of the constituent worms, and this can lead to a
different dependence of Dblob on Rblob.
The observed size-independent blob-diffusion constant

for active worms can be rationalized using a simple model.
Let us assume that an individual worm i exerts a pushing
force fðtÞ with rms magnitude f0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjf iðtÞj2i
p

, in a
direction that varies randomly with a correlation time τ,
i.e., hf iðtÞ · f ið0Þi ¼ f20e

−t=τ (for simplicity, we take f0 and
τ to be the same for all worms, but allowing a distribution of
values does not change the main result). The total force

exerted by N worms is FðtÞ ¼ P

i f iðtÞ, and assuming zero
cross-correlation between the individual worm forces, we
have hjFðtÞj2i ¼ P

ihjf iðtÞj2i ¼ Nf20, so the rms magni-
tude of the total force is

ffiffiffiffi

N
p

f0, and hFðtÞ · Fð0Þi ¼
Nf20e

−t=τ. Since the worms inside the entangled blob are
effectively immobilized, only the worms at the outer
surface of a blob contribute force. The number of worms
at the surface of a blob of radius Rblob is N ∼ R2

blob, so the
total random force exerted by these N worms has a rms
magnitude

ffiffiffiffi

N
p

f0 ∼ Rf0 and a correlation time τ. The drag
force on the blob as a function of speed v is given by
Stokes’s law, Fdrag ∼ vRblob. To obtain the steady-state
speed v, we equate the driving and drag forces and obtain
a velocity v that is independent of the blob radius Rblob. The
random walk of a blob occurs by random steps (of duration
∼τ) in which it has approximately the steady-state velocity
v (independent of size), and so the blob-diffusion constant
is independent of blob size. It might be that worms at the
bottom of a blob have slightly less activity than the ones on
the sides and on the top, but this would not change the
essentials of the scaling argument: the blob shape is to a
good approximation independent of size [Supplemental
Material Fig. S5(a)], so the fraction of surface worms
located at the bottom surface is approximately constant,
and taking their potentially reduced activity into account
would only give rise to a size-independent prefactor in the
scaling expression for the total force exerted by the worms.
Again simulating the blob growth, but now using a size-

independent blob-diffusion constant (Dblob ¼ 1), we obtain
a growth exponent of ∼0.3 [red points and line in Fig. 3(b)],
in good agreement with the experimentally observed value.
Thus, a size-independent diffusion constant for the random
motion of the blobs explains the observed power-law
growth of the worm blobs (Figs. 2 and 3), at least in the
2D experiments. In the 1D experiments, the situation is
complicated by the fact that blob motion slows down when
the blob size becomes comparable to the channel width,
possibly due to friction at the glass-worm surface. This
makes quantitative analysis of the blob diffusion difficult.
However, the fact that, in this case, the diffusion constant
does decrease with Rblob, and that at the same time the
growth exponent is closer to that predicted by the conven-
tional droplet-coalescence model, does provide a qualita-
tive confirmation of the above ideas.
The coalescence of blobs can be modeled by the

Smoluchowski aggregation equation, but here we give a
scaling argument for the dynamics. We assume stochastic
coalescence of the blobs and a size-independent blob-
diffusion constant. We characterize the blob-size distribu-
tion by a single blob radius RðtÞ that increases with time
and we start the system with a mass per unit area σ. For
worms of unit mass density, the mass of a single blob is
Mblob ∼ R3. The number density of blobs in the plane is
nðtÞ such that nðtÞR3 ¼ σ, so the separation aðtÞ between

FIG. 4. Blob diffusion. Effective diffusion constant as a function
of average blob size hRblobi at T ¼ 20°C as determined from the
slopes of experimental MSDs (see Supplemental Material [21]).
The error bars are mostly due to sample-to-sample variability. The
purple line shows the expected scaling for particles undergoing
Brownian random motion (Dblob ∼ hRblobi−1). The experimental
data (blue symbols) indicate a diffusion constant independent of
blob size (dotted line). (Lower insets) Photographs of blobs of
different sizes from which we measured the diffusion coefficient.
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aggregates varies as aðtÞ ∼ 1=
ffiffiffiffiffiffiffiffi

nðtÞp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R3ðtÞ=σ
p

. The
blobs diffuse and the time for a blob to find a neighbor
and coalesce with it is given by a2 ∼Dt (with D the
diffusion constant). Thus, in time t ¼ cR3 (with c a
proportionality constant) the mass of a blob doubles since
we have just coalesced two neighbors. Hence, the evolution
of the characteristic blob mass obeys the scaling relation
½t;Mblob� → ½tþ cR3; 2Mblob�; thus, we have tþ cR3 ∼ kt,
with k ¼ Oð1Þ, for all t, and hence t ∼ cR3 and so R ∼ t1=3,
in excellent agreement with the observed value [Figs. 2(f)
and 3(b)]. Repeating the argument for a diffusion constant
varying as D ∼ 1=R implies that RðtÞ ∼ t1=4.
To conclude, the active motion of tubifex worms leads to

a phase-separation mechanism that is different from that of
normal polymers, and that seems to be due only to the
active nature of the living worms and to the immobilization
of the worms at the inside of the entangled blobs; it may
therefore be a generic phenomenon, also occurring in other
types of polymeric active matter with entanglement inter-
actions. We hope that the results presented here will
stimulate further experimental and theoretical work in this
direction.
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