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PACS. 36.20C - Conformation (statistics and dynamics). 
PACS. 68.42 - Surface phase transitions and critical phenomena. 

Abstract. - We consider a semi-flexible chain adsorbed on a wall by a constant external field, h, 
or a short-range surface potential, V,. When the amplitude of h or V is decreased the system 
undergoes an unbinding transition; the properties of such transitions are studied here through 
various analytical and numerical methods (Flory approximation, scaling arguments, transfer 
matrix methods and Monte Carlo simulations). In particular, we obtain a general form for the 
entropy reduction ((<steric interactions.) for constrained chains. The unbinding transition from 
an attractive V,  is shown to be discontinuous in the limit of very rigid chains. 

Rigidity, or bending energy, has been shown to play an important role in the statistical 
behaviour of amphiphilic membranes and films [l] .  In particular, if thermal fluctuations are 
governed by rigidity, the entropic repulsion between two such <<semi-flexible. two- 
dimensional (2d) objects is effectively long-ranged [2]. This <(steric. repulsion can in fact 
overcome the molecular attraction acting between membranes and give rise to an unbinding 
transition[31 at which membranes separate each from the other. In this letter, we shall 
study a similar phenomenon for semi-flexible chains (SFC). It is now well established that 
certain linear macromolecules such as polypeptides, DNA etc., have a large persistence 
length [4] (i.e. the correlation length of their orientation), and therefore the rigidity plays an 
important role in their statistical behaviour. For instance, it was shown[5] in recent 
experiments that the sequence-dependent stiffness of DNA can influence protein-DNA 
binding specificity. The steric repulsion between rigid macromolecules are now also being 
studied in DNA crystals [6]. Here we examine the adsorption and unbinding of SFCs from 
lines and surfaces. The connection of our results to the unbinding of 2d membranes is briefly 
discussed at the end of this paper. 

A simple model describing a SFC consisting of N monomers of size a = 1 in the potential 
V ( r )  can be introduced through the Hamiltonian 
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with unit <<bond>> vectors +ii = ri+l - ri (p = l/kB T), and we put kB = 1. x plays the role of the 
persistence length [7]: it typically takes length x to reverse the chain's orientation. We shall 
consider such a SFC in two different situations both leading to  unbinding transitions. 

In the first case the chain is held against a wall by an external field, h, thus V(r) = hx: an 
unbinding transition then occurs as the field is reduced, i.e. when h + 0: ( z )  - h-'., where x 
is the distance from the wall and the brackets denote a thermal average. To understand this 
phenomenon, and in particular to calculate the value of the exponent A it is sufficient to 
consider a SFC in a constrained geometry (e.g. between two hard walls spaced by L). Then 
one can evaluate the constraining potential, or the reduction in entropic free energy per 
monomer, fs(L). We find in general three nontrivial regimes for this potential: a <(self- 
avoiding regime., where the excluded volume effects are important, a .Gaussian regime., 
where they are unimportant and a .squashed regime. ('), where essentially all segments of 
the chain are nearly parallel to the wall. In these three regimes one finds, respectively, 

~ % - 1 / 3 ~ - 2 1 3  
1 

where v is the radius of gyration exponent of a self-avoiding chain: RG - N ' .  The first regime 
disappears for spatial dimensionality d 3 4 [4], while the second Gaussian one does not exist 
in d = 2 [81. The corresponding unbinding exponents h are obtained by simply minimizing (2) 

f s ( ( z ) )  + ( x )  h: A = v / ( v  + l), 1/3, 3/5 in the three regimes, respectively. The result of eq. (l), 
obtained here through standard Flory-de Gennes type of arguments [4] and also confirmed 
through a numerical simulation of tethered chains in 2d, can be viewed as a generalization of 
the fluctuation-induced, steric interactions for the case of highly crumpled chains. 

The second situation which we consider is the one in which a SFC is adsorbed on a wall by 
an attractive, short-ranged surface potential, V,. An unbinding transition takes place when 
the attraction jV,l is decreased below some threshold Vo(3) .  This transition is in general 
continuous, however, we find that in the limit of large rigidities x it becomes effectively of 
f i r s t  order. In fact this is an unusual situation in which a so-called special surface 
transition [ 101 (the unbinding transition in this case) becomes discontinuous. This result is 
demonstrated here both analytically and through the numerical study of a transfer matrix 
which also demonstrates f i n i t e  size scaling. 

We now address various issues underlying these results (4). We first consider a SFC in a 
constrained geometry, e.g., between two parallel walls. Flory-de Gennes type of 
arguments  [4,8] lead to seven different regimes for the behaviour of the chain, as illustrated 
in fig. 1. First consider N large, such that for unconstrained geometry (L >> RG) the self- 
avoidance is important 181. This happens in the Flory approximation ( 5 )  when N > N* - 

('1 This last .squashed regime. is the one usually considered in the problems of interacting chains 

(') This corresponds to the so-called complete unb ind ing  transitions of interfaces and membranes, 

(3) This corresponds to the so-called critical unbinding  transitions, see ref. [3] and footnote ('). 
(4) Details of the calculations will be published elsewhere. 
(5) Note that for a nonself-avoiding SFC N* is the size for which the average number of self- 

or membranes: see, e.g., ref. [31. 

see, e.g., ref. [9]. 

intersections is of order 1. For d > 4 N* is infinite: the self-interactions are then irrelevant. 
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Fig. 1. - Different regimes for a SFC constrained between two walls for 2 c d 6 4. (HR denotes the 
hindered-rod regime.) Note that the transitions between regimes are not sharp; continuous crossovers 
occur in the vicinities of the lines indicated. 

- xd/(4-d), the radius of gyration is then RG(N) - N”Fx”(~+~) ,  with vF = 3/(d + 2). The 
constraints distort the coil when L < RG(N). The confined chain can be viewed [4] as a string 
of blobs of linear size L with Nb monomers per blob provided that L 3 x .  For L 2 RG(N*) the 
self-avoidance is important within each blob whereas for L < RG(N*) the blobs are Gaussian. 
The confinement energy is T per blob[4], thus the free energy cost of confinement per 
monomer is TINb. For self-avoiding blobs, i . e .  for Nb 2 N*, Nb - L1iVF~-113, whereas for 
Gaussian blobs Nb+ L’x-’. This leads to the frst two formulae of eq. (1). If the chain is 
constrained further to L < x the blob picture does not hold. In this asquashed* regime one 
can estimate the f s (L) ,  via an argument similar to that used for interfaces with surface 
tension[lll. The x component of $, v i= f i i - 2 ,  performs a random walk, and therefore 
(/vi - vjl) - (li -j l /x)112 for li - j l  small enough. The positions, xi = 2 vi, then fluctuate as 

( / x i  - x j i )  - / i  - j /3 ’2x-1 ’2 .  The density of collisions with the wall is thus of order L-2’3x-1’3. 
This leads to the last formula in eq. (1) under the assumption that the confinement = free 
energy is of order T per collision [12]. For smaller values of N ,  namely x < N C N*, an 
unconstrained coil is Gaussian [8] (except in 2d where the regime disappears). On decreasing 
L such coils transform into strings of Gaussian blobs (at L - RG(N) - (Nx)~’’) and finally 
enter the squashed regime (at L - x) .  For N G x the free chain behaves like a rod of length 
N.  The orientations of such rods are restricted for L < N .  Furthermore, the squashed 
regime is entered for L<N312x-112 (see above). 

In order to check these simple arguments we have performed a Monte Carlo simulation of 
a SFC in 2d, subject to a constraining field h (see(4)). We used a &ethered-chain. model 
(e .g . ,  described in ref. [13]) with the bending Hamiltonian, and N varying up to 100. Figure 
2 shows some results of such simulations. For small x and large N one finds in fact both the 
(self-avoiding) coil and blobs regimes characterized by A = 1 and v / ( v  + l), respectively (we 
find the values 0.97 k 0.05 and 0.425 k 0.015). Note that the scaling plot in fig. 2a) does not 
show the squashed regime since here we put x = 0 (see fig. 1). For large x this squashed 
regime characterized by h = 3/5 is clearly seen already for N = 50 (we find the value 
0.59 5 0.01). Figure 2b) also shows the freely rotating and hindered rod regimes. 

We now turn to the problem of surface adsorption of SFCs for general d and short-range 
surface potentials. We first neglect the self-interactions. Any configuration of the chain 
consists of alternating segments in and out of the surface potential. Such a situation can be 

3=1 
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Fig. 2. - Results of Monte Carlo simulations for a SFC in d = 2. The abbreviations for different 
regimes correspond to those in fig. 1. An additional large-h regime, with ( 2 )  - h-' is entered when h 
becomes large. a) x = 0,  N = 100, N = 50, 0 N = 30, + N = 20, x N = 10, b )  N = 50, x = 2000. 

treated using generating-function techniques [ 141. An important quantity is the partition 
function Z l  of a segment of length I out of the surface potential whose ends are at the 
wall [141. For large 1 this function behaves as Z l  - exp [ - Plf] l-$, where 1, is the free energy 
per monomer in the absence of the wall. The nature of the unbinding transition is 
determined by $: for 1 < $ < 2  the transition is cont inuous  with critical exponents 
determined by $ [14], whereas for $ > 2 the transition is f i r s t  order. We shall show now that 
in the limit of large x the transition is indeed first order with $ 3 9/4. 

Let us consider the Boltzmann weightfi(r, a) of a SFC with 1 monomers whose end is at r 
with .bond>> orientation a. For large x when the chain is near the wall the dominant 
configurations have n almost parallel to the wall; one can then rescale the x-direction, 
introducing fi = a 8xln and 2 = r 8 ~ " ~ .  In the limit x + CO the Fokker-Planck equation [15] 
can be written as 

(Note that with the above rescaling the limit x +  does n o t  correspond to the trivial 
problem of a strictly rigid rod.) On imposing the constraints that the SFC does not cross the 
wall we expect scaling of the form 

for large 1. The scaling function g(x, y) drops rapidly for x >> 1 or y >> 1 and g(x, 0) = O(1) for 
x + 0. In the limit x << 1 and y << 1 one can show that g(x, y) = h,(y3/x), where ha satisfies 
Kummers' confluent hypergeometrical equation [ 161. The boundary conditions of no chains 
coming out of the wall (fi(0, fi) = 0 for fi > 0) and that I = Jdfid2fi is finite imply a = 1/6. For 
this solution I - l/l+-'" and since this integral cannot increase with 1, we obtain $2 9/4. 

In order to test these arguments we have studied numerically a 2d lattice model based on 
the transfer matrix equation 

with the initial conditionf,,, ( 1 , O )  = 1. The potential V(2) consists here of two hard walls at 0 
and L and an attractive part at E =  l :V(l)  = -Vs. The system are of finite size L in the 2 
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Fig. 3. - Results of transfer matrix calculations for the free energy per monomer, f, and the mean 
distance, (z), from an attractive wall. The transition happens at  wo = exp [- Vo] = 1.567 f 0.002. 
0 L=41, 0 L=75, A L=91, f L=181, x L=371, 0 L=671. 

direction (L  varies from 41 to 671). From the scaling described above this is similar to taking 
chains of finite lengths I - L'". The usual finite size scaling for first-order transitions [17] 
then has scaling variables ( 2 )  L-', (V, - VO)La3 and Jz2'3, where f is the free energy per 
monometer. Figure 3 shows that such finite size scaling is obeyed, demonstrating that the 
transition is first order. Moreover, we have directly measured within this model, and found 
$ = 5/2. We also checked that I - l/l+-g'4 - P4. 

Forfinite x ,  ard any d, this first-order transition crosses over to a continuous unbinding 
transition. In the necklace model, which still applies provided that there is no self- 
interaction, the Z L  decays as l/Z+ only for lengths shorter than the persistence length x.  For 
larger scales the chain behaves as a Gaussian random walk and Z L  decays as l/Z3" [14]. This 
causes the crossover to happen when the correlation length 4, along the chain in the bound 
phase becomes of order x .  (When the transition is first order Ell - (V, - Vo)-'.) The resulting 
continuous transition is in the same universality class as (1 + 1)-dimensional wetting [18]. In 
the presence of self-interactions one expects to find a so-called polymer special 
transition [lo, 191. For d = 2 the crossover is directly from the first-order behaviour 
described above to this special transition (at E,, - x ) ,  whereas for d > 2 there are actually two 
crossovers with an intermediate Gaussian regime for x G Ell S N*. These crossovers 
correspond precisely to the three regimes listed in eq. (1). 

For 2d membranes we also expect a variety of regimes for unbinding. In contrast to SFCs 
there is no Gaussian regime for d = 3, since 2d membranes cannot avoid colliding. Forfluid 
membranes the persistence length, E,, is always finite [201. One should thus have a cross- 
over, analogous to that discussed above, from a squashed regime (studied in ref. [3]) to a 
self-avoiding-surface regime at lengths - 5,. In the latter regime the <<blobs>> are thought to 
have the statistics of branched polymers [21]. For polymerized (tethered) membranes, on 
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the other hand, a crumpling transition occurs as x is decreased [22]. Thus there will be one 
universal unbinding behaviour in the rigid phase[23] and another one in the crumpled 
phase [241. If the crumpling transition is continuous we expect a third universality class for 
the unbinding of such critical membranes. 

Further work is clearly needed to understand fully all unbinding behaviours of semi- 
flexible chains and surfaces. We hope that the simple ideas presented here will stimulate 
new experimental studies of the adsorption and interactions of macromolecules and 
membranes. 
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