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Two plateau moduli for actin gels

A. C. Maggs
ESPCI, 10 Rue Vauquelin, 75231 Paris Cedex 05, France

~Received 26 August 1996!

Conflicting experimental results have been reported for the plateau modulus in actin solutions: Analogies are
often made with the viscoelastic behavior of flexible polymers making use of the idea of entanglement as the
source of the macroscopic storage modulus. We resolve apparent experimental and theoretical contradictions
by pointing out the possibility of two distinct plateau regimes as a function of frequency in semidilute solutions
of semiflexible polymers. We make the point that longitudinal and transverse hindrance can have very different
effects at the macroscopic scale.@S1063-651X~97!02006-0#

PACS number~s!: 87.15.2v, 83.10.Nn, 83.50.Fc, 83.80.Lz
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INTRODUCTION

Purified actin solutions are often taken as a simple m
chanical model for the actin cortex of eucaryotic cells. T
mechanical properties of the cortex are linked to the m
chanical properties of the individual actin filaments, thou
clearly the properties of the biological system are modifi
by the presence of a multitude of actin associated proteins@1#
which crosslink and regulate the viscoelastic state of the
lular cortex. Understanding of the mechanical nature of
actin cortex must surely pass, however, by an understan
of the mechanical and rheological properties of simplifi
actin solutions. These solutions are known as gels in
biological literature, even though there is little evidence
crosslinking playing a role in their mechanical propertie
Unfortunately there are considerable variations in the
ported values of the plateau modulus of purified actin so
tions. Several groups have measured the macroscopic
coelastic properties of actin using various concentration
frequency ranges@2–6#; the values of the viscoelastic con
stants found vary by many orders of magnitude without a
clear trend emerging from the data. The situation has b
further confused by the assimilation of results coming fro
macroscopic rheological experiments and experiments
formed with micrometer sized magnetic particles which,
shall argue, do not measure the same effective elastic
stants.

Two recent theoretical papers have approached the p
lem of the value of the plateau modulus in actin solutio
@7,8#. The conclusions were rather different since the mec
nisms which were assumed to be at the origin of the plat
modulus were not the same. One article considers the los
entropy due to variations in tube geometry as the cause o
plateau modulus and finds agreement with low frequen
low density experiments@2#, while the second paper postu
lates the presence of entanglements or crosslinking as s
length scales to explain the high values of the modulus fo
by other experimental groups@3# at higher densities and fre
quencies. Our aim in this paper is to show that one
expect in general two plateau modului as a function of
frequency and that at least part of the variation between
experimental results could be due to this fact; however,
experimental paper has yet seen the effects that we be
must be present. We wish also to make the point that
551063-651X/97/55~6!/7396~5!/$10.00
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rheology of semiflexible polymers could have significant d
ferences with the rheology of flexible polymers and th
great care should be taken in the interpretation of experim
tal results over limited frequency ranges.

We remind readers that flexible semidilute polymer so
tions have three characteristic time scales in which the
coelastic behavior is very different. At the longest times t
sample is fluid and is characterized by a macroscopic visc
ity. On short time scales one samples the Rouse inte
modes leading to a characteristic variation of the viscoe
ticity in Av. Between these two regimes the material has
elastic plateau due to the presence of topological entan
ments, which can only relax via the process of reptation. T
value of this plateau is determined by the distance betw
these topological defects@10,11#. The aim of this paper is to
determine to what extent similar mechanisms are active
the rheology of semiflexible polymers. We do this in a mo
fied tube model of the dynamics.

Our fundamental hypothesis is that the effect of the s
rounding polymer solution behaves as an enclosing tube
in the dynamics of flexible polymer solutions. However, w
consider that the longitudinal dynamics in the tube are
hindered. In this we are at variance with the hypothesis in@7#
where the effect of surrounding polymers is to block rela
ation in both longitudinal and transverse directions. Desp
the relaxation of the constraint on the longitudinal motion t
solution is still able to store elastic energy due to the lo
relaxation times of longitudinal modes. Thus we do not u
the usual language of entanglements in the description of
dynamics since this implies the presence of steric hindran
which block all relaxation dynamics rather than only tran
verse dynamics.

Most rheological experiments on actin are carried out i
concentration range where the typical distance between
neighboring filaments,L, is between 0.3 and 1mm, a dis-
tance small compared with the persistence lengthl p
'15mm @9#. The length of the filaments is not very we
characterized, the samples are rather polydisperse. We
thus in a novel rheological regime compared to that stud
in the classical rheology of flexible polymers where the p
sistence length is small compared with the distance betw
contacts or entanglements. However, as in solutions of fl
ible polymers the long time rheology of actin solutions
dominated by reptation of the filament out of the confini
7396 © 1997 The American Physical Society
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55 7397TWO PLATEAU MODULI FOR ACTIN GELS
tube. In typical experiments where the mean length of a
filaments is between 20 and 30mm this time can be many
hours; it is the longest time scale in actin rheology expe
ments. This escape from the tube leads to fluid behavio
seen in high sensitivity rheological experiments@2#. A de-
tailed discussion of the time scales is given in@7#.

In semiflexible polymers there is a large discrepancy
time scales between the diffusion of the center of mass
filament out of the tube and the slowest of the internal mo
of a filament@7#. Over this range of time scales no dissip
tion can take place and the modulus must show a plat
The modulus has as its origin the loss of entropy due
distortion of the confining tube; in an equilibrated sample
tube confining a filament has its optimal~lowest free energy!
form; shear changes the tube geometry and thus must le
an increase in the free energy. This modulus is quite sma
value and can be estimated@7# asG5kBT/ l eL

2 where l e is
the mean distance between collisions of the filament with
tube wall; this modulus is probably smaller than 1 Pa
typical experimental conditions;l e has been estimated a
l e5L4/5l p

1/5 @12#. L is the mean distance between filamen
Experimentally this modulus has been observed on t
scales between 100 and 10 000 s@2#. L is a function of the
actin monomer concentrationc and varies asL;1/Aac with
a the monomer size.

Unlike in the rheology of flexible polymers shear coupl
directly to length fluctuations of filaments; transverse th
mal fluctuations in the filament lead to variations in the lo
density of the filament in the tube and hence an effec
longitudinal modulus@13#, Fig. 1. Under shear successiv
sections of the filament of lengthl p are then placed unde
tension or compression depending on their orientation,
2. Each section of filament of lengthl e behaves as a rathe
hard longitudinal spring@7#. Since the persistence length
actin, l p , is extremely large the initial imposed strains whi
are coherent over the lengthl p must diffuse a large distanc
in order to begin to relax. This relaxation has a rather w
defined characteristic time scale of about 100 s and
source of dissipation and hence variation in the effect
modulus. For higher frequencies than this relaxation time
dissipation is again weak and we find a new plateau do
nated by the longitudinal elastic constant of the filament.
the shortest time scales~smaller than 0.1 s! the concept of a
tube breaks down and one must consider the movemen
individual filaments.

In the second part of this article we present a deta

FIG. 1. Fluctuation of a filament in a tube formed by neighb
ing filaments. The projection of the density onto the average line
the tube leads to a fluctuation in the local density in the tube.
typical distance between collisions of the filament and the tube w
defines the distancel e .
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calculation of the dynamics of a filament in a tube. We w
conclude that between 0.1 and 100 s the sample can be
sidered as being formed from an ensemble of elemen
elastic elements of lengthl e with a Hook modulus@7,8#
equal to Kl5 l p

2kBT/ l e
4, leading to a macroscopic shea

modulus equal toK5 l p
2kBT/ l e

3L2. The elastic constant has a
its origin the crumpling, or ironing out of thermal fluctua
tions under the influence of the stress acting on a filam
The second value for the modulus is much larger than
first, given above, and can be equal to some tens or hund
of pascals. Similar high moduli have been recently propo
but only by supposing the existence of entanglements
crosslinks at the scalel e @8#. Isambert and Maggs@7# postu-
lated this result as the high frequency limit of the elas
modulus but were unable to deduce the full frequency dep
dence and the possibility of the second plateau. No long
dinal entanglement is needed here for producing the h
modulus. It exists because there is no relaxation mode av
able to the system in the time scale between 0.1 and 10
We give a schematic drawing of the frequency depende
of the modulus in Fig. 3.

Experiments performed with small magnetic particles in
frequency range near 1 Hz couple directly to the local be
ing of individual filaments@14,15#. Our explanation for the
macroscopic modulus is in terms of coupling to longitudin
density fluctuations in the tube. The effective modulus se
by microscopic particles is much smaller than that measu
in macroscopic rheological experiments in the same
quency range. There is no simple way of comparing the
sults of macroscopic and microscopic rheological expe
ments. The small values of the modulus found near 1
from microrheology cannot be interpreted as implying sim
larly small values for the macroscopic modulus.

We now present a detailed calculation of the motion o
semiflexible polymer in a tube and show how it leads to
above results for the macroscopic rheology of actin fi
ments. Note that we choose to work in a system of units s
as thatkBT and the viscosity of water are taken as unity.
this case time has the units of a volume.

-
f
e
ll FIG. 2. Schematic representation of the effect of shear o
filament.~A! Shearing a sample results in an effective stretching
object inclined at 45° to the horizontal and compression of obje
at 135° to the horizontal. An initial tube~B! is deformed into the
form ~C!. The strains induce stresses which are coherent ov
distance equal to the persistence length equal to 15mm. The
stresses must diffuse over a large distance to begin to relax, lea
to a long characteristic time for longitudinal stress relaxation.
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REPTATION OF SEMIFLEXIBLE POLYMERS

We shall deduce the elastic modulus of a solution of act
filament by using the fact that the time dependent modul
G(t) is equal to the stress in a sample after the instantane
application of a straine. G(t) is related to the complex
modulus via the equationG(v)5 iv*G(t)exp(ivt)dt @11#.

Consider a filament confined in a tube whose mean tr
jectory in space is given by

R~s!5„x~s!,y~s!,z~s!…, ~1!

wheres is the curvilinear distance along the original tube s
that

udR~s!/dsu51. ~2!

Under an external shear the tube is distorted in space to
form

R~s!5„x~s!1ey~s!,y~s!1ex~s!,z~s!…. ~3!

Under this distortion we can recalculate the tangent~2! to
find

udR~s!/dsu5112e~dx/ds!~dy/ds!. ~4!

The longitudinal modes of the filament in the tube are cha
acterized by an elastic constantKl , so that the local stress
T in a filament after an initial rapid shear is given by

T~s,t50!;Kle~dx/ds!~dy/ds!. ~5!

The stress which is due to a local excess or deficit of mater
in the tube after the shear is subjugated to a local conser
tion law. If there is a local tension due to a deficit of filamen
locally it can only be relaxed by the influx of new filamen
from further along the tube thus

]T~s!

]t
5D

]2T~s!

]s2
, ~6!

FIG. 3. Schematic representation of the plateau modulu
G(v) of a solution of actin filaments showing the regimes dis
cussed in the main text:~A! Fluid behavior at very low frequencies.
~B! Entropic plateau.~C! Crossover between the two plateaux
which is expected to be a sensitive function of the distribution
filament lengths in the solution.~D! Plateau due to longitudinal
elasticity.~E! Crossover to independent filaments.
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with D an effective diffusion constant for relaxation of de
sity fluctuations. One can also consider that this equatio
the equation of a series of overdamped springs, givin
normal quadratic dispersion relation. One can estimateD by
matching time and length scales at the smallest length sc
that such a description remains valid. That is, for fluctuatio
occurring at the scalel e . Such fluctuations relax on a tim
scalete where te5 l e

4/ l p . Matching this expression to Eq
~6! one finds that

D; l p / l e
2. ~7!

The Green function of Eq.~6! is Gaussian thus we can solv
for the time evolution of the stress,T(s,t) using standard
techniques and find

T~s,t !;E T~s8,0!
exp@2~s2s8!2/2Dt#

A2Dt
ds8. ~8!

Note that ^T(s,t)& is zero since a filament can be und
either tension or compression. Thus we shall examine
behavior of^T2(s,t)& for the case of long filaments wher
end effects can be neglected. A short calculation gives t

^T2~ t !&;e2Kl
2E ^ ẋ~s8!ẏ~s8!ẋ~s9!ẏ~s9!&

3
exp@2~s821s92!/2Dt#

2Dt
ds8ds9, ~9!

where the average on the right hand side is an average
the original tube statistics and we have used the fact that
long filaments one can chooses50. The original tube distri-
bution is that of a semiflexible polymer in equilibrium. Th
tangent vector to the filament decorrelates over the corr
tion length. In a simple approximation we can also take
y andx components of the tangent as independent thus
correlation function in Eq.~9! can be written as a product o
two tangent correlation functions. Thus we find

^ẋ~s8!ẏ~s8!ẋ~s9!ẏ~s9!&5^ẋ~s8!ẋ~s9!&^ ẏ~s8!ẏ~s9!&

;exp~22us82s9u/ l p!. ~10!

Substituting Eq.~10! in Eq. ~9! one finds the following ex-
pression for the time evolution of the stress:

^T2~ t !&;e2Kl
2E exp~22us82s9u/ l p!

3
exp@2~s821s92!/2Dt#

2Dt
ds8ds9. ~11!

From this expression one finds two regimes as a function
Dt/ l p

2. For short times one can expand the first exponen
in Eq. ~11! in powers ofus82s9u to find

^T2~ t !&;Kl
2e2@12O~ADt/ l p!#. ~12!

This is our main result and as announced the stress in
sample remains high until longitudinal stress has had a t
to diffuse over the persistence lengthl p , which takeste
5 l e

2l p or around 100 s under the usual experimental con

s,
-

f
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55 7399TWO PLATEAU MODULI FOR ACTIN GELS
tions. We deduce also that the macroscopic modulus m
also remain high over the same time interval and equal to
value at the timete as stated in the Introduction. The ma
roscopic modulus is found from the spring moduliKl by
noting that a unit volume of material hasL2 springs in par-
allel and 1/l e springs in series, implying thatK5Kl l e /L

2.
ThusK has units of energy per unit volume as expected
a modulus.

For filaments which are long compared with the pers
tence length one can also consider the regime in wh
Dt/ l p

2@1. In this case the integral is dominated by diago
band in the (s8,s9) plane ~Fig. 4!. The width of this band,
l p , is given by the first exponential in Eq.~11! and the length
of the band is given byADt. Thus one can estimate that

^T2~ t !&;
Kl
2e2

2Dt
l pADt ~13!

and that the stress decreases in the sample ast2(1/4) after
shear. However, we cannot expect to see this regime in
rent experiments since the typical filament lengths are c
parable tol p ; longer filaments are needed to see this effe
In samples with very long filaments the free energy would
dominated by this residual contribution over a certain f
quency range~which could be dominant over the first en
tropic mechanism! leading to a variation in

G~v!;K~ l pl e
2!1/4v1/4 ~14!

for the complex modulus at low frequencies. We note t
the plateau observed in many experiments is not perfect
perhaps shows a certain contribution of the form~14!.

The long time tail in Eq.~13! is due to the fact that in
one-dimensional~1D! diffusion the density at the origin falls
very slowly. When the calculation is done with finite fila
ments the ends can act as sinks of stress and act as adso
boundaries in Eq.~6!. One can write the solution of a diffu
sion equation such as Eq.~6! in terms of the eigenvalues an
eigenvectors of the operators involved, one finds that

FIG. 4. Region of the (s8,s9) plane which dominates the inte
gral ~11! in the limit of long time.
st
ts

r

-
h
l

r-
-
t.
e
-

t
nd

ing

G~s,s8,t !5(
i

w i~s!w i~s8!exp~2l i t !. ~15!

Thus for the longest times one is dominated by the expon
tial decay of the slowest mode of Eq.~15!. These adsorbing
boundary conditions on the diffusion equation imply that t
slow decay in Eq.~13! is replaced by an exponential loss
stress in a given filament whenADt is large compared with
the filament length. With a distribution of lengths in th
sample one expects that the exact long time decay is ra
sensitive to the preparation of the sample, and thus is ra
badly reproducible between different samples and even m
so between experimental groups. This suggests that sys
atic studies of the variation seen in elastic properties betw
samples should be correlated with the length distribution i
sample.

To conclude, one expects two plateau regimes. The firs
very low frequencies is due to entropic loss after shear. T
second plateau comes from the longitudinal dynamics of
tin filaments in their tube. Between these two well defin
regimes there is a crossover which is strongly dependen
the distribution of filament lengths in the sample.

DISCUSSION

We have shown how the tube dynamics of a semiflexi
polymer lead to a number of novel rheological regimes co
pared with those studied in flexible polymer systems. In p
ticular, the linear coupling of length fluctuations to an exte
nal shear leads to the existence of a second plateau reg
In this regime there are no longitudinal topological entang
ments, nor is gelling needed to produce a relatively h
plateau modulus. In actin it is well known that there are
large variety of associated proteins that interact strongly w
actin which act as gelling agents. These agents can h
reversible or irreversible interactions. It will be of conside
able interest to study these agents experimentally and f
the theoretical point of view to see how they modify th
image of actin dynamics. It would also be useful to make
careful experimental study of the linearity of the response
a function of applied force. Actin samples are extreme
fragile and, as is well known, extremely liable to breakag
however, other less drastic effects such as buckling of fi
ments out of the tube could also lead to novel nonlin
effects including entanglement. The present calculations
valid in the limit that filaments are longer than the pers
tence length. Shorter filaments will lose their stress m
rapidly, leading to a change in frequency of the crosso
between the two regimes.

With long filaments one could expect a phenomenon
work hardening via the following mechanism: Modera
forces on a sample should be large enough to buckle
filament and form hernias similar to those observed in
electrophoresis of DNA. These hernias~where the filament
buckles out between the posts forming the tube! can be ex-
pected to have a major effect on the longitudinal dynam
Oscillating rheometers might thus be expected to form so
tions where new entanglements are present. Study of
kind of phenomenon requires the simultaneous observa
of mechanical properties and filament configuration via flu
rescence techniques.
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7400 55A. C. MAGGS
One might hope to have a greater control over the len
distribution by using a method of polymerization of actin
the presence of both gelsolin and phalloidin. Gelsolin is
efficient nucleation center for actin while phalloidin sto
depolymerization of filaments. In this way it should be po
sible to prepare relatively monodisperse samples. T
should permit a systematic study of the crossover betw
the two regimes proposed in this paper.

Note added in proof.I would like to thank David Morse
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for reading this paper and for making the following remark
~a! The decoupling approxmation Eq.~10! is not needed. The
quartic correlation function in Eq.~9! can be calculated ex
catly by considering the quadrupolar component of
spherical diffusion operator.~b! The full stress tensor can b
calculated in our picutre by calculating s i j
5*^ui(s)uj (s)T(s)&ds. Morse has calculated the full non
linear response in the low frequency limit@16# in the tube
picture.
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