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Abstract. - We study first-order mean-field quantum phase transitions, in particular the exponentially fast
closure of the energy gap with the system size. We consider exactly solvable ferromagnetic models and
discuss their relation to the Grover problem to which they reduce in a particular limit. We compute the
coefficient in the exponential closure of the gap using an instantonic approach. We also discuss the (dire)
consequences this has for quantum annealing and combinatorial optimization.

Many important practical problems involve the minimization
of a function of discrete variables. Solving such combinato-
rial problems by temperature annealing is a classical strategy
in computer science [1]: the idea is to use thermal fluctuations
to avoid trapping the system in local minima, and thereby ef-
ficiently visit the whole configuration space. It has been pro-
posed to extend this approach to quantum fluctuations [2]; it
is thus of interest to ask whether annealing by tuning down
the amplitude of a quantum mechanical kinetic operator such
as a transverse magnetic field can outperform the classical
approach. In particular, can problems that normally take expo-
nential time be solved in only polynomial time?

Some considerable effort has been devoted to this question
in the context of difficult combinatorial problems (see for in-
stance [3]) which have a counterpart in statistical physics where
they corresponds to mean-field spin-glass models [4, 5]. How-
ever, most of the studies were purely numerical and thus re-
stricted to very small sizes due to the difficulty of simulating
quantum mechanics without a quantum computer. In a recent
Letter [6] (see also [7]), we argued that with the usual imple-
mentation of the quantum annealing it is likely that the most
difficult systems undergo a quantum transition of the first order
as the transverse field is tuned; this is a generic feature of a cat-
egory of quantum spin glasses [8]. More recently, a first order
transition has indeed been indentified in the phase diagram of
some of the most studied random optimization problems, the
XORSAT problem [9]. All this implies the failure of the quan-
tum annealing algorithm for the hardest optimization problems.

The goal of the present paper is to illustrate these features

via a complete analytical and detailed numerical analysis of a
family of models, in order to show how a precise estimate of
the energy gap at the transition can be obtained.
In a nutshell, the reason why quantum annealing is not an ef-

ficient strategy for finding the ground state across a first-order
transition can be understood from a simple, qualitative argu-
ment. Quantum annealing could in principle be more efficient
than thermal annealing for certain classes of problems: From
the WKB approximation it is well known that a quantum par-
ticle tunnels rapidly through very high (in energy) but thin (in
distance) energy barriers. Thermal annealing is much better
at low, but deep barrier crossing. However, in a first-order
transition the two states whose free energies cross are gener-
ally far from each other in the phase space; quantum tunnel-
ing must be inefficient. To make this argument more precise,
one can consider the energy gap between the two lowest en-
ergy states using the standard implementation [2] for quantum
spin annealing; the time needed to actually reach the ground
state is bounded by the inverse of the gap as ! −2: a small
gap implies a large running time. Mean-field first-order tran-
sitions have generically an exponentially small gap, typically

Ne− N where N is the system size, and can be com-
puted analytically in mean-field models using an instantonic
approach. In turns, this implies ! eN , that is to say: quantum
annealing is an exponentially slow algorithm for a mean-field
system at a first-order transition1.
In this Letter, we consider a family of simple ferromagnetic

models that allow a detailed numerical and analytical analy-

1In finite dimensions one expects that nucleation will help.
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sis that will hopefully render our reasoning transparent. In
particular we study the ferromagnetic p-spin model which re-
duces to a mean-field ferromagnet for the case p = 2 and to
the Grover problem when p→ . We show how to solve the
thermodynamics of these models using standard tools of sta-
tistical physics. We also perform extensive numerical studies
of the gap for the case of p finite and odd. By introducing an
ansatz for the dominant instantonic pathways we also show that
we are able to understand the numerical results for the quantum
gap for arbitrary p, and to compute the coefficient in the expo-
nential decay of the gap. We believe that the lessons learned in
these models are very generic, and will turn out to useful in the
analysis of more complex systems.

The simplest quantum ferromagnet. – We consider a
Hamiltonian with N Pauli spins of the form H = Hz + V
where Hz is a function of the longitudinal values z of the
spins. Hz is thus diagonal in the z representation. We will
focus on the ferromagnetic p-spin model, defined as:

H = − 1
Np−1

i1,...,ip

z
i1 . . .

z
ip −

i

x
i (1)

= −Mp(! z)
Np−1 − MT (!x) =−N

[
mp(! z)− mT (!x)

]
(2)

wherewe have defined the longitudinalmagnetizationM( ! z)=
i

z
i and the transverse oneMT (!x) = i

x
i and their magne-

tization by site m=M/N and mT =MT /N. That sort of mod-
els were introduced initially in a spin-glass context in [10]. The
ground state of the classical problem, when = 0, corresponds
to all spins aligned in the same direction. Whereas both the up
and down states are valid ground states for even p, the up state
is the unique ground state for odd p, and we will concentrate
on this case for simplicity. The case p = 2 is the usual Curie-
Weiss model, where the transition is continuous [11, 12]. For
p > 2 however, both quantum and thermal transitions are dis-
continuous. Of special interest is the limit p→ where for p
odd m({!S})p →±1 if m= ±1, and zero otherwise: it leads to
the following Hamiltonian:

H = −N11
(

i

z = N

)
+

i

x (3)

where the function 11(x) is 1 if x is true and zero otherwise. We
now specialize to this p= limit.

The p= limit. –
The classical case: = 0. The p = model is trivial in

the limit → 0 where there are only two levels with nonzero
energies. The partition sum is Z = 2N−2+2cosh N so that

f = lim
N→

− 1
N
log

(
2cosh N+2N−2

)

≈ lim
N→

− 1
N
log

(
e N

(
1+ eN(log2− )

))

= min( fP, fP) with fF = −1 and fP = − log2 (4)

One recognizes a first-order transition at c = log2 between
two phases that are always locally stable (no spinodal): a fer-
romagnetic phase that consists of the classical configuration
where all spins are up for > c and a trivial paramagnetic
phase at larger temperature.
The extreme quantum case: = . When is large the

classical part of the Hamiltonian can be neglected; we find, in
the x basis, a model with N independent classical spins in a
field :

fQP = −T log2−T log(cosh /T ). (5)

The entropy density is just given by the logarithm of a binomial
between− N and+ N: this is a perfect quantum paramagnet.
The general case. For = 0 and inverse temperature
< log2 we saw that the classical model is just a model where

(almost) all configurations have zero energy. In this case, we
thus can ignore the two nonzero levels and we expect the quan-
tum paramagnetic free energy fQP to be valid for all . A sim-
ple perturbation computation – given in the next section– shows
that this is true in the low-temperature phase as well, when

> log2. The system thus has two distinct phases, the first a
quantum paramagnetic and the second a ferromagnetic phase.
A first-order transition occurs when the free energies cross so
that f =min( fQP, fF). The phase diagram of the model is very
simple: For low and T , the free-energy density is that of the
classical model in the ferromagnetic phase, while for larger
it jumps to the quantum paramagnetic free energy; a first-order
transition separates the two different behaviors at the value
such that fF = fQP; this happens on the line defined by

=
1 acoshe

2
(6)

where the magnetization jumps from zero to one (see Fig. 1).
The zero-temperature behavior can be understood from

Rayleigh-Schrödinger perturbation theory [13]. Consider the
set of eigenvalues Ek and eigenvectors |k〉 of the unperturbed
model, when = 0. The series for the lowest perturbed eigen-
value Emin( ) reads

Emin( ) = Emin+ Vii+
k &=min

2Vmin kVk min
Emin−Ek

+ . . . . (7)

Since Vi j &= 0 if and only if i and j are two configurations that
differ by a single spin flip, odd orders do not contribute in
Eq. (7). Noting that k &=n |Vnk|2 reduces to a sum over the N
levels connected to Ei by a single spin flip, one obtains,

k &=min

V 2ik
Emin−Ek

=
N
Emin

, (8)

wherewe have used the fact that the Ek (except one) are all zero.
The following n orders are computed in the same spirit and are
found to be also negligible and non-extensive. Therefore, to all
(finite) orders, we have:

Emin( ) = −N− 2+o(1) . (9)
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The expansion can also be performed using now V as a start-
ing point and with H0 as perturbation. Consider the eigen-
value −N . In the base | N〉 corresponding to the eigenvalues
of V 2, we obtain

E( ) =−N + 〈N |H0 | N〉+
k &=n

|〈k | H0 | N〉|2

−N −Ek
+ . . . . (10)

Denoting a(l) the elements of the vector | N〉 in the z basis,
the first-order term in this expansion reads−Na2(1). Since the
a(l) are of order 2−N/2 the first-order shift is tiny. The next
term involves a sum over the 2N−1 levels that reads

k &=min

|a(1)k(1)|2

− N−Ek
=

k &=min

2−N |k(1)|2

− N−Ek
. (11)

The last sum is entropically dominated by the states with Ek = 0
and therefore gives a negligible contribution (as one can check
term by term). Subsequent terms are treated similarly. This
yields the ground-state energy:

EGS = −N− 2+o(1) for < c (12)
EGS = − N+o(1) for > c (13)

with c = 1+ 2
N +o(N−1).

Exponential closure of the gap. Very near the transition the
treatment must be refined: There is an (avoided) level crossing
at c = 1 in the large N limit between the paramagnetic and the
ferromagnetic ground state. We now compute the behavior of
the quantum gap at the transition around = 1. We write the
Hamiltonian in the x basis:

Hi j = i i, j +Ecaia j (14)

where !a is the state corresponding to all spins aligned in the
z direction expressed in the x basis. Ec = −N and is are the
(binomially distributed) energies due to the quantum interac-
tion. With an appropriate convention for the eigenvectors we
can take for a the vector 2−N/2(1,1,1, ....1). In this basis, on
multiplying with an eigenvector!v of eigenvalue , we find

0 = ( i− )vi+Ecai(!a.!v) = vi+Ec
ai
i−

(!a.!v)(15)

Multiplying again by!a, we find

(!a.!v)+Ec
i

a2i (!a.!v)
i−

= 0 (16)

so that
N
2N i

1
i−

= 1 . (17)

The qualitative behavior of the eigenvalues can now be un-
derstood graphically: Between each pole in the denominator of
Eq. (17) the function passes from − to + passing through
unity. All interior roots to the function are thus bracketed by
a comb of poles separated by 2 . In the small phase this

2Note that in the z basis the ground-state vector | N〉 has elements ±2N/2.

rigorously brackets almost all the eigenvalues near = 0. The
exception is the lowest eigenvalue which can split off from the
comb, a sign of the phase transition in the large N limit.
In the paramagnetic phase, the lowest eigenvalue is very

close to = − N. In this case − N − is very small so
that we can write = − N + . In addition the overwelm-
ing majority of eigenvalues i are close to zero 3; Eq. (17) then
implies, at the transition when = 1

1 =
N
2N

[
1

−N− +
2N−1
−

]
=

N
2N

[
− 1 − 2N−1

−N

]
,

so that finally 2 = N2/2N at the critical point and

min = 2N2−N/2 . (18)

The gap closes exponentially fast at the transition. We have
an extremely simple model with a first-order mean-field transi-
tion and most of the physics discussed in this Letter is already
present in this model: difficult problems, such as this one where
only one in 2N configurations has a low energy, manifest them-
selves by a first-order transition in the quantum annealing path,
and consequently by an exponentially small gap.
The reader could at this point argue that we have not shown

that all choices of the quantum interaction lead to this result;
perhaps a more intelligent choice would turn the transition to
second order, and make the gap polynomial? We know that for
this precise model, this is just impossible. In fact, this model is
nothing else than the Grover problem [14], that is: searching for
a minimum value in an unsorted database. The best algorithm
is known, and it is an exponential one [14]. It is obtained by
adjusting the evolution rate of the Hamiltonian in the quantum
annealing process so as to keep the evolution adiabatic on each
infinitesimal time interval. In doing so, the total running time
can be [15], which is still exponential. There is thus no
way to avoid the exponential gap in this situation.

Behavior for general p. – We now consider the ferromag-
netic model with finite value of p and begin by calculating the
phase diagram in the static approximation. We then consider
closure of the gap using numerical diagonalization and an in-
stantonic calculation which we then compare.
Phase diagram. We shall first use the Suzuki-Trotter for-

mula in order to map onto a classical model with an additional
“time” dimension:

Z =
{! }

(
e− Hz+ i

x
i
)

= lim
Ns→

Tr{! }

[
e−Ns Hze Ns i

x
i

]Ns

= lim
Ns→ {! }

〈! |e−
Ns

=1 Ns Hz( )e
Ns

=1 Ns i
x
i ( )|! 〉 . (19)

We then introduce N closure relations 11= {! } |! 〉〈! |:

Z =
{ !( )}

Ns

=1
〈 !( )|e− Ns Hz( )eNs i

x
i ( )| !( +1)〉

=
{ !( )}

Ns

=1
e− Ns Hz( )

Ns

=1
〈 !( )|eNs i

x
i ( )| !( +1)〉

3Systematic corrections to this approximation do not change the result.
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with the convention that !(Ns+1) = !(1). Applying Ns times
the integral representation of the delta function

∫
dm (Nm−

M({!S})) f (Nm) = f (M({!S})), one finds:

Z =
∫ Ns

=1
dm( )

Ns

=1
d ( )exp

(
N
Ns

Ns

=1
m( )p

)
×

exp

(
− N
Ns

Ns

=1
( )m( )+N logTr

Ns

=1
e
[
Ns

x( )+ ( )
Ns

z( )
])

.

The saddle point condition imposes that ( ) = pm p−1( ).
Writing t = /Ns and performing the limitNs→ we obtain:

Z =
∫

Dm(t)e
N

∫
0 dt(1−p)m

p(t)+N log



Tr e

[
∫
0 dt x(t)+pmp−1(t) z(t)

]



.

(20)
We now use the “static” approximation, which we also check
numerically [11, 12], and remove all “time” indices for m to
finally obtain:

Z =
∫
dme− N f ( , ,m) (21)

f ( , ,m) = (p−1)mp− 1
log2cosh

( √
2+ p2m2p−2

)
.

All thermodynamic quantities can now be computed. For in-
stance, the self-consistent equation for the magnetization m
reads (for p> 2)

m=




tanh

( √
2+ p2m2p−2

)

√
2+ p2m2p−2



 pmp−1. (22)

It is easy to check that the former expression leads to first-order
(quantum and classical) transitions when its minima cross. In
particular, the free energy for p→ is simply f =−1 for m=1
and f =− 1 log2cosh( ) otherwise, as we obtained in the
first section. The phase diagram of the model is plotted in
Fig. 1. The large p behavior converges to the p= one.
The T = 0 limit yields the ground-state energy:

eGS( ,m) = (p−1)mp−
√

2+ p2m2p−2 (23)

where m = 0 in the quantum paramagnetic phase, while it is
given by the nontrivial solution of Eq. (22) in the ferromagnetic
phase. This is in fact the zero temperature limit of the energy

e(T ) = f (24)

( → ) ≈ eGS+2
√

2+ p2m2p−2e−2
√

2+p2m2p−2 .

In the low-temperature limit, the energy of a system with N
excited states with an energy gap E is E = EGS+N Ee− E ,
and this computation thus shows that there are N levels with
an energy gap E = 2

√
2+ p2m2p−2 where E jumps and

is discontinuous at the transition, as it should for a first-order
transition.
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Fig. 1: Phase diagram of the ferromagnetic p-spin ferromagnet for dif-
ferent values of p. A first-order transition separates the ferromagnetic
and quantum paramagnetic phases.

This is, however, only a crude description of the phe-
nomenology of the low-lying states. If indeed only one level
is closing at the transition, then we expect the energy to behave
as E =EGS+ Ee− E, and therefore one needs to compute the
O(1) correction to the energy in order to take this into account.
The former computation thus misses this behavior and indeed,
numerical results show that the first excited state is unique.
Worse, we expect the energy gap between the ground state and
the excited state to close exponentially fast at the transition,
and therefore, in order to be able to investigate this behavior,
we should be looking for an exponentially small gap: in that
case we thus need to look for exponentially small correction
to the free energy! Fortunatly, there is a way to deal with this
problem, and we thus now turn to a numerical study of the gap
and to the instantonic approach.

Closure of the gap. –
Numerical methods. We use two complementary methods

to study the spectrum of the p-spin model for 3≤ p≤ 31. The
full matrix representation of the Hamiltonian is a sparse oper-
ator of dimension 2N . For such sparse matrices Laczos meth-
ods are particularly useful and can be used to extract extremal
eigenvalues from the spectrum for N ≤ 21. We note in particu-
lar that that for N ≤ 21 the transition occurs between two states
with the maximum possible angular momentum l = N/2.
Considerable improvements in efficiency are possible if we

note that the total angular momentum L2 commutes with the
Hamiltonian. Thus the transition occurs in a subspace of di-
mension 2l + 1 = N + 1. In this subspace the Hamiltonian
has diagonal elements corresponding to different values of L z.
Standard methods from the theory of angular momentum show
that the off-diagonal elements of the matrix in this subspace are
only those labeled by (mz,mz± 1). The matrix is symmetric
with off-diagonal elements

Hmz,mz+1 =
√
l(l+1)−mz(mz+1) (25)

The resulting tri-diagonal matrix an be treated with very high

p-4



Quantum energy gaps and first-order mean-field transitions

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2

m
in

p=3

N=10
N=20
N=30
N=60
N=90

N=120
N=150

Fig. 2: Numerical computation of the gap versus for p= 3 computed
using the method described in the text. Very close to the transition at
c (the black vertical line), in a region that shrinks as N increases, the
gap is closing exponentially fast.

efficiency allowing one to study systems of N ∼ 100 in just a
few seconds. The limiting factor in the study of even larger
systems is the reduction of the gap to double precision machine
accuracy so that floating point round-off errors dominate the
results. Fig. 3 shows the dependence of the minimum gap for
some values of p. We see that for all p ≥ 3 the gap closes
exponentially in N.
Fig. 2 shows the dependence of the gap as a function func-

tion of for p = 3 and different N. indeed closes fast at
the transition that arises exactly at the critical value predicted
analytically. The region where the gap closes is getting nar-
row as N increases, and one has to be very careful in scanning
in order not to miss it: this is an important message for fu-

ture numerical simulations. Fig. 3 shows the dependence of the
minimum value of the gap min as a function of N for some
values of p. For all p ≥ 3, the gap decays exponentially as
min N2−N . The different values of are given in Table 1.
As we expected, the gap closes exponentially fast at the first-
order transition point. We want now to show how the coeffi-
cient in the exponent can be computed analytically.

The Instantonic approach. It is well known that the tun-
neling between quantum states can be computed using an in-
stantonic approach [16]. Let us briefly explain how this can be
understood via corrections to the saddle-point computation. At
the transition, two solutions (the ferromagnetic one m = meq
and the paramagnetic one m = 0) have the same free energies
fm = fQP. Let us assume now that we are able to find another
time-dependent path m(t) —which we shall call instantonic—
that spends some time 1 in the ferromagnetic state and then
jumps to the paramagnetic state where it spends a time 2, and
that exactly at the transition, one has = e−N ( finst− f f erro) =
e−NG with G = O(1) in the zero-temperature limit. Since we
are summing over all periodic paths, one should now take into
account all such instantonic paths that jump an even number
of times to compute the correction to Eq. (22). Each of these

 1e-14
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Fig. 3: Minimum Gap versus N from exact diagonalization of the fer-
romagnetic p-spin model for some values of p on a linear-log scale.
One clearly sees that for each p the gap closes exponentially with N,
so that min N2−N . The curves can be seen to approach the infinite
p limit of eq. (18).

jumps can occur at any time t ∈ [0, ] and the saddle-point com-
putation thus reads, at the transition:

Z = 2e− F +2e− F
( 2

2
2+

4

4!
4+

6

6!
+ . . .

)

= 2
k even

k

k!
e− F k, (26)

where the factor k/k! comes from the counting of all possible
paths with k jumps. One then recognizes the series expansion
of an effective two level system:

Z = Tr e− He f f , with He f f =
(

F
F

)
. (27)

Diagonalizing the effective Hamiltonian at T = 0 one sees im-
mediately that the gap goes as = e−NG: the energy cost
of the instanton thus provides the exponent of the gap at the
transition.
Computing the Instanton. We can consider various ansätze

to compute the optimal instanton, all of them giving lower
bounds on the coefficient. The simplest one is just a sharp wall
when m(t) jumps abruptly from the value mQ to mF . The gap
thus reads in this approximation:4

= 〈F |Q〉N = eN log〈F|Q〉 (30)
4This can be seen in the discrete Suzuki-Trotter formalism where

Z =
{ !( )}

Ns

=1
〈 !( )|e Ns ( x( )+h z)| !( +1)〉 . (28)

Each term but one can be written in its respective diagonal base (1) or (2) and
be computed with the static approach. However, there is a remaining term of
the form

〈!1|e Ns ( x( )+h z )|!2〉 = 〈!1|!2〉〈!1|e Ns ( x( )+h z )|!1〉 (29)
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p c mc
Gap
sharp

Gap
tanh

Gap
simu

3 1.2991 0.8660 0.2075 0.1251 0.126(3)
5 1.1347 0.9682 0.3390 0.2686 0.270(3)
7 1.0874 0.9860 0.3888 0.3335 0.335(3)
9 1.0647 0.9921 0.4150 0.3699 0.370(3)
11 1.0514 0.9959 0.4318 0.3929 0.395(3)
13 1.0426 0.9965 0.4422 0.4105 0.410(3)
15 1.0364 0.9974 0.4502 0.4224 0.421(3)
17 1.0318 0.9980 0.4564 0.4315 0.431(3)
19 1.0282 0.9985 0.4620 0.4387 0.439(3)
21 1.0253 0.9987 0.4648 0.4445 0.445(3)
23 1.0230 0.9990 0.4679 0.4493 0.450(3)
25 1.0211 0.9991 0.4705 0.4534 0.454(3)
27 1.0194 0.9993 0.4728 0.4568 0.455(3)
29 1.0180 0.9994 0.4747 0.4598 0.460(3)
31 1.0168 0.9994 0.4763 0.4623 0.462(3)
. . . 1+ 1

2p 1− 1
2p2

1
2 −

log2
p . . . 1

2 −
1.15...
p

1 1 1
2

1
2

1
2

Table 1: First-order transition in the p-spin ferromagnet at zero tem-
perature: The critical values for the field c and magnetization mc
are given. The gap at the transition decays exponentially fast as

N2−N Gap and we give the numerical results from exact diagonal-
ization Gap

simu, the estimates with the sharp instanton
Gap
sharp (an upper

bound on the true value) and the soft instanton Gap
tanh , its values are

indistinguishable from the numerical ones.

where 〈F | and 〈Q| are the eigenvectors of the matrix
(

pmp−1

−pmp−1

)
(31)

Exactly at the transition, we find:

= e
− N
2 log

(
2− 4A(mc , c)

(1+A(mc, c))2

)

with (32)

A(m, ) =
pmp−1+

√
p2m2p−2+ 2

. (33)

In particular for p→ , we find A→ so that ≈ N2−N/2,
as was previously found in the first section. For finite p, how-
ever this yields only a crude lower bound on the value of the
exponent (see Table 1).
We thus use a tanh shape for m(t) and compute numerically

the cost, by integrating Eq.(20). We use the width of the tanh
function as a variational parameter which we vary in order to
minimize the estimate of the instanton free energy from which
we deduce the gap. The results of this procedure are given
in Table 1. When we now compare the numerical data from
exact diagonalization with the prediction from the instantonic
computation, we observe that there is no detectable difference
within our numerical precision between the instantonic predic-
tion from the tanh shape and the numerical estimation of the
coefficient. We have thus succeeded in computing the gap from
first-principle computations.

Conclusions. – Quantum annealing has been presented as
a new way of solving hard optimization problems with com-
plicated and rough configuration spaces. In this paper we have
shown that even in systems with trivial energy landscapes quan-
tum annealing can fail (and there is thus no need to invoke com-
plex phenomenon to explain this failure, as is for instance done
in [17]). Already the p = 3 ferromagnet exhibits a first-order
phase transition with an exponentially closing gap: A scenario
which is very pessimistic for the success of the quantum an-
nealing algorithm. We have also shown that the p = limit
of the ferromagnetic model is related to the Grover problem.
This is a clear indication that these first-order transition carry
the signature of the most difficult problems.
Models presented in this Letter allow a complete analytical

and numerical treatment. The exponential closure of the gap
at the transition can be studied using the instantonic approach.
Their disordered counterpart can be studied using the general-
ized instanton we introduced in [6, 7]. It would be also inter-
esting to extend this approach to dilute mean field system, that
include the natural random benchmark optimization problems,
using the quantum cavity of [9, 12], in order to be able to esti-
mate the closure of the gap for such problems.
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