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Abstract. The leapfrog integrator is widely used because of its excellent
stability in molecular dynamics simulation. This is recognized as being due to
the existence of a discrete variational structure of the equations. We introduce a
modified leapfrog method which includes an additional energy-like conservation
law by embedding a molecular dynamics simulation within a larger dynamical
system.

1. Introduction

The leapfrog integrator for molecular dynamics is known to display several exceptional
features which allow it to have superior long-time stability compared with many
higher-order integrators. This exceptional nature is due to the exact conservation
of momentum and symplectic structure by the discretization (Hairer et al. 2002).
The symplectic nature is particularly important for statistical mechanics applications
because it tells us that there is a well defined density in phase space which is conserved
– as in the classic Liouville theorem; this density is the basis for the construction of the
Gibbsian approach to statistical mechanics (Gibbs 2010). In addition the existence of
a backward error analysis (Reich 1999) tells us that we are observing trajectories which
are those of a perturbed Hamiltonian which is close to that which we are interested
in.

Despite these numerous advantages there is one important quantity which is not
exactly conserved; this is the energy. It fluctuates on small time scales and can drift in
the very longest simulations.This is normally countered by introducing a coupling to a
thermostat (Nosé 1984, Hoover 1985, Frenkel & Smit 2002), but this leads to a change
of ensemble from micro-canonical to canonical. The aim of the present paper is the
construction of an integrator that is similar in many ways to the leapfrog method, but
which is embedded in a larger dynamic system. The dynamics of the larger system
are such that the original energy emerges as an additional conservation law.

There are many trivial (and bad) manners to impose energy conservation – for
instance one can regularly rescale the particle velocities. However, such arbitrary
modifications to the dynamics break the symplectic structure which is a disaster for
applications in statistical mechanics. Our approach to build a larger dynamic set of
equations via variational methods in such a way that we can construct the discrete
Hamiltonian of the system and thus explicitly understand the phase-space structure
of the extended dynamical system.
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This extended dynamical system is built using several components. We start by
considering a discretized Lagrangian, in which the extra conservation is imposed by a
Lagrange multiplier. From this dynamic system we build a discretized Hamiltonian.
This Hamiltonian has a common defect that occurs in constrained systems (such as
electrodynamics) – there is no momentum which corresponds to the multiplier. The
solution is to add additional terms to the Hamiltonian which are zero, but which
nevertheless generate independent dynamical equations for the multiplier. The logic
is very close to the treatment of the potential in electrodynamics which has the formal
role of being the Lagrange multiplier in imposing Gauss’ law (Dirac 2001).

2. Variational integrators

We firstly resume how to pass from a discretized Lagrangian to the leapfrog integrator
before generalizing to our more complicated constrained system: Newton’s equations
of motion for particles moving under velocity independent forces can be found by
considering the variational problem

δ

∫ {
m

2

(
dq

dt

)2

− V (q)

}
dt = 0 (1)

In the following we will take all masses to be identical, and will allow q to denote aN×d
dimensional vector corresponding to N particles moving in d dimensional space. This
Lagrangian can be discretized by replacing derivatives by finite differences evaluated
every τ so that tk = kτ for integer k:

Lk = m
(qk+1 − qk)2

2τ2
− V (qk) (2)

The discretized action principle is then (Guo et al. 2002, Marsden & Raiu 1999)

δ
∑
k

τLk = 0 (3)

This variation then gives simple partial derivatives with respect to xk so that

m(qk+1 + qk−1 − 2qk) + τ2V ′(qk) = 0 (4)

which is indeed a version of the leapfrog algorithm (Frenkel & Smit 2002). In the
continuous time limit the energy, U is exactly conserved.

U =
m

2

(
dq

dt

)2

+ V (q) (5)

However any time stepping procedure such as eq. (4) leads to a breakdown in the
conservation of energy. The first step of our modified procedure will be to take the
energy eq. (5) and add it as a constraint to the original Lagrangian density eq. (2).

Lk = m
(qk+1 − qk)2

2τ2
− V (qk) +

λk

(
m

(qk+1 − qk)2

2τ2
+ V (qk)− U

)
(6)

We will call the second line of eq. (6) the quasi-energy. In the following the dynamic
schemes that we propose will conserve this discretized quasi-energy to machine
accuracy. In this expression λk is a Lagrange multiplier whose dynamics will be
developed in the following sections. In the continuous time limit clearly λ = 0.
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The main questions that will arrise are the following: In the presence of the
extended dynamical system eq. (6) how do we interpret Liouville’s theorem? What
are the corresponding momentum variables for the discretized evolution equations that
comes from eq. (6). In order to answer these questions we pass from the Lagrangian
description to a Hamiltonian form for the dynamics.

3. Discrete Hamiltonians

We will need to introduce a slightly more formal notation in order to pass from the
above Lagrangian formulation to a discrete Hamiltonian form. However this notation
is such that we find expressions which are very close to those in standard treatments
of Hamiltonian dynamics. We firstly introduce the finite time difference operator

∆qk = (qk+1 − qk)/τ (7)

We also need its adjoint ∆∗ which is defined so that∑
ak∆qk = −

∑
qk(ak − ak−1)/τ =

∑
ak∆∗qk (8)

for arbitrary vectors ak. Thus we see that

∆∗qk = −∆qk−1 (9)

There is a natural shift of unity in indices when performing the discrete version of
integrating by parts.

The Lagrangian equations of motion are then

∆∗
∂L

∂∆qk
+
∂L

∂qk
= 0 (10)

which is very close to their form in the continuum limit. We now define the momentum
variables:

pk+ 1
2

=
∂L

∂∆qk
= m(qk+1 − qk)(1 + λk)/τ (11)

The use of half-integer labels for the momentum variable is motivated by the fact that
the momentum pk+ 1

2
couples to both qk and qk+1. We construct the Hamiltonian as

usual as a Legendre transform of the Lagrangian.

H(qk, pk+ 1
2
) = pk+ 1

2
∆qk − Lk

=
p2
k+ 1

2

2(1 + λk)m
+ Vk(1− λk) + λkU (12)

Let us consider the equations of motion which come from applying Hamilton’s
principle to eq. (12). We calculate

δ
∑
k

[
pk+ 1

2
∆qk −H(pk+ 1

2
, qk)

]
= 0 (13)

and find

∂H

∂qk
= −∆pk− 1

2
(14)

∂H

∂pk+ 1
2

= ∆qk (15)
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which is the discretized form of the Hamiltonian equations of motion, with ∆pk− 1
2

=

(pk+ 1
2
− pk− 1

2
)/τ . More explicitly we have

τ∆pk− 1
2

= pk+ 1
2
− pk− 1

2
= −τ(1− λk)V ′k (16)

τ∆qk = qk+1 − qk = τ
pk+ 1

2

m(1 + λk)
(17)

When λk = 0 this corresponds to the standard alternating update in the leapfrog
algorithm.

Now consider the equation which comes from varying the Lagrange multiplier λk:

∂H

∂λk
= U − V (qk)−

p2
k+ 1

2

2m(1 + λk)2
= Wk = 0 (18)

which is just the equation for the quasi-energy in the Hamiltonian picture. Note
this quasi-energy conservation does not imply that the Hamiltonian eq. (12) is itself
conserved, however if they are numerically close one might hope that the stability of
the algorithm is also improved for H.

If λk were a true dynamic degree of freedom we would have deduced from eq. (18),
in analogy to eq. (14) that

−∆πk− 1
2

= Wk(qk, pk+ 1
2
, λk) (19)

where πk− 1
2

the conjugate momentum to λk. We discover that in order to have a full
Hamiltonian description of the system we must add this extra degree of freedom, but
also that πk− 1

2
= 0 for all k in order conserve the quasi-energy. We will show this is

possible later, but firstly move on to the practical question of implementation of the
algorithm.

4. Integration loop

The equations eq. (16), eq. (17) together with the constraint equation Wk = 0, eq. (18),
tell us how the positions and momenta of the particles evolve within a time step. We
now show that the equations have explicit (non-iterative) solutions that require only
small modifications of the usual leapfrog step.

We firstly take eq. (18) and substitute eq. (16) for pk+ 1
2
.

2m(U − Vk) =
(pk− 1

2
+ τ(1− λk)fk)2

(1 + λk)2
(20)

or

S(1 + λk)2 = p2k− 1
2

+ 2τpk− 1
2
fk(1− λk) + τ2f2k (1− λk)2 (21)

with fk the force. Thus

λ2k(S − τ2f2k ) + λk(2S + 2τpk− 1
2
· fk + 2τ2f2k ) +

(S − 2τpk− 1
2
· fk − τ2f2k − p2k− 1

2
) = 0 (22)

with S = 2m(U − Vk). This is a simple quadratic equation for λk which involves
quantities which are already calculated within a leapfrog integration loop. In practice
λ remains small throughout our simulations and its value is close to

λ ≈ −τp · f/S (23)

We can integrate the equations with the following loop
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know λk−1, qk, pk− 1
2

calculate fk(qk)
calculate λk eq. (22)
calculate pk+ 1

2
eq. (16)

eq. (18) satisfied at this moment of cycle
calculate qk+1 eq. (17)
know λk, qk+1, pk+ 1

2

This is the practical generalisation of the generalised leapfrog method with the
addition of an exact conservation of the quasi-energy. Note that eq. (23) implies that
the iteration becomes ill defined if S becomes too small, this is notably the case of
a one-dimensional harmonic oscillator where the algorithm becomes unstable. For a
system of N particles we expect that S is an extensive variable so that λ ∼ τ/

√
N .

Already when we simulated with two degrees of freedom we found that the code
remains stable; it is unlikely that all particles in a simulation become stationary at
the same moment.

The equations of motion as stated above are adequate to implement the algorithm.
However they contain a formal weakness. While p and q evolution is the result of
a variational principle eq. (13) this is not true of λ. The Lagrange multiplier is
simply slaved to impose energy conservation. Such slaved variables are well known
in quantum mechanics, indeed the electrostatic potential is an example of such a
variable; this explains the initial difficulties in the quantisation in electrodynamics
due to the lack of an obvious conjugate momentum. We now show how to render the
equation for the evolution of λ autonomous, and thus better understand the phase
space of the enlarged dynamic system. We will use methods which are rather similar
to those invented in electrodynamics (Dirac 2001, Leimkuhler & Skeel 1994) where
the electrostatic potential also has a role which is similar to a Lagrange multiplier.
There are clear analogies too with our previous work on local simulation algorithms for
charged media (Rottler & Maggs 2004, Maggs 2002, Maggs 2004). The first problem
with the equation eq. (12) is that it does not include a momentum variable, π which
is conjugate to λ. We correct this deficit with the following ansatz: we add an extra
term to the Hamiltonian:

πk+ 1
2
µk(qk, pk+ 1

2
, λk) (24)

where µk is a function that we will construct later. This leads to the following
equations of motion:

∆λk =
∂H

∂πk+ 1
2

= µk (25)

−∆πk− 1
2

=
∂H

∂λk
= Wk + πk+ 1

2

∂µk

∂λk
(26)

We now use the idea of weak constraints: For arbitrary functions µk we
have a Hamiltonian system. We will show that the correct choice of the function
µk(pk+ 1

2
, qk, λk) allows us to impose both the conservation of eq. (18) but is also

compatible with ∆πk− 1
2

= 0. We then start the dynamic system in the state π = 0
and this remains true for all further times in the dynamics.

We now show that the function µk is indeed only a function of the objects
(qk, pk+ 1

2
, λk). We proceed by considering Wk at two successive time steps, imposing
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conservation of the quasi-energy

Wk(qk, pk+ 1
2
, λk) = Wk+1(qk+1, pk+3/2, λk+1) (27)

We now eliminate the variables qk+1 and pk+3/2 from the right hand side using eq. (17)
and eq. (16). If we do so the right hand side of eq. (27) is a function of qk, pk+ 1

2
, λk+1

We can thus, in principle solve for λk+1 and write the evolution in the form

λk+1 = λk + µk(qk, pk+ 1
2
, λk) (28)

as needed for the dynamics of πk− 1
2

, eq. (24), eq. (25)

5. Phase space and Liouville

We have succeeded in embedding our original system of particle dynamics in a larger
system such that the quasi-energy is exactly conserved. To do so we were obliged
to introduce two new variables λk which started as a simple Lagrange multiplier and
πk− 1

2
which is the conjugate momentum. For a system of N particles in d-dimensional

space this gives us a phase-space of dimensions 2dN + 2.
We now study the Jacobian of the discrete evolution equations to show that the

constrained dynamical systems are compatible with the assumed measure. The maps
eq. (16) and eq. (17) are easily seen to have unit Jacobians on the phase space defined
by the variables (q, p, λ, π). The evolution equations for λ require slightly more study.
The Jacobian for λk+1 = λk + µk(qk, pk+ 1

2
, λk) is given by J = 1 + ∂µk/∂λk. while

we see we can re-arrange eq. (26) to give πk+ 1
2

= πk− 1
2
/(1 + ∂µk/∂λk). It is thus

the product of these two factors which ensures that the Jacobian of a full time-step
is indeed unity. We thus see that introduction of the “dummy” momentum π has
absorbed the fluctuations in phase space volumes that would otherwise result from
the use of the Lagrange multiplier.

Thus we have a complete set of Hamiltonian dynamics on the extended phase
space with the extra pair of variables λ, π which are now fully autonomous. We
however choose special initial conditions π = 0 that lead to the exact imposition
of quasi-energy conservation. We conclude that we have a phase space measure of
the form dq dp dλ dπ, with conservation laws imposing constant quasi-energy, particle
momentum, and π (Khinchin 1949).

6. Time reversal

While we have added a conservation law to the leapfrog integrator we have also lost a
symmetry which is present in the standard leapfrog algorithm – it is time reversible:
The more complicated quasi-energy conserving version does not re-trace its trajectory
when momenta are reversed. This extra symmetry can be imposed in our algorithm by
alternating the direct step (described above in section 4) with a version in which each
step in implemented in reverse order, with τ → −τ . The main technical difficulty is
that the equation of λk−1 given qk and pk− 1

2
becomes implicit and must be solved by

iteration. In practice we find that a simple iteration procedure converges to machine
precision in two steps if we use eq. (23) as a starting guess for λ. The algorithm in
which direct and reversed steps are alternated then displays time reversal symmetry.



Adding an energy-like conservation law to the leapfrog integrator 7

7. Numerical studies

In this section we give concrete examples of the stability of the integration procedure
applied to an interacting particle system. We take N = 10 particles interacting in two
dimensions with a non-truncated Lennard-Jones potential. The system is simulated
at low temperatures to form a stable droplet. Our thermostat seems in many ways
similar to velocity scaling methods such as iso-kinetic dynamics so we compare our
method to two thermostating methods. In the first “isoT” we scale the velocities after
each integration step so that the total kinetic energy is constant, this is an interesting,
historic method of controlling temperatures in simulations. In a very similar manner
we also introduce an “isoE” ensemble in which the kinetic energy is also scaled to
render the total energy constant. As a measure of the stability of the method we
then measure the drift of a physical quantity which is known to be conserved in the
continuum limit, and which is not controlled explicitly in the algorithm. For this we
chose the z-component of the angular momentum defined by

Lz =
∑
i

(xipiy − yipix)

where the sum is over all particles. In both simulation we launch the simulation in a
state where the centre of mass positions and momenta are zero. These conditions are
conserved by the thermostating.

During a simulation of the droplet (using a time step of 10−3 in Lennard-Jones
time units) over a period of 106 time steps in both methods there is a systematic
drift of the angular momentum of the system. We then simulated using our method
based on conserved quasi-energy. Using the quasi-energy methods at no time in the
simulation did the absolute value of Lz become larger than 10−12. We see that the
integration errors coming from simple velocity scaling are far larger than the round-off
errors in the quasi-energy method, errors or already O(1) after this short simulation.
During this simulation the quasi-energy remains stable to within 10−15, see Fig. 1.

8. Conclusion

We have constructed a variational integrator which includes an additional conserved
quasi-energy. Due to the variational Hamiltonian form we are able to study the
phase space measure and understand the discrete Liouville theorem that is implied
by the dynamics. Implementation of the algorithm requires a small overhead
in computational effort compared with the standard leapfrog integrator. We
have implemented a version of the code for the molecular dynamics study of a
truncated Lennard-Jones potential and verified the stability of the quasi-energy during
simulation.

Comparison with algorithms that look similar – such as velocity scaling algorithms
to preserve energy or kinetic energy show that the quasi-energy method better
conserves other properties that can be important for long time dynamical studies.
The example that we gave was the angular momentum.
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Figure 1. Evolution in the z-component of the angular momentum for three
simulations. Topmost curve: the velocities are scaled to conserve kinetic energy.
Bottom curve: the scaling conserves the total energy. The quasi-energy method
gives a stable angular momentum with fluctuations which are invisible on the
scale of the other curves. The amplitude of the quasi-energy fluctuations is a
factor 1012 smaller than the two other methods.
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