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Numerical methods for fluctuation-driven interactions between dielectrics
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We develop a discretized theory of thermal Casimir interactions to numerically calculate the interactions
between fluctuating dielectrics. From a constrained partition function we derive a surface free energy, while
handling divergences that depend on system size and discretization. We derive analytic results for parallel plate
geometry in order to check the convergence of the numerical methods. We use the method to calculate vertical

and lateral Casimir forces for a set of grooves.
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I. INTRODUCTION

Dispersion forces are long-range interactions due to ther-
mal or quantum fluctuation fields. The first theoretical deri-
vation was due to Casimir [1], who predicted the attraction
of two neutral plates. A general continuum theory, developed
by Lifschitz [2], addresses the nonadditivity of these forces
and is often used to interpret experiments [3]. Calculation of
dispersion forces requires knowledge of the frequency de-
pendent dielectric constant, information which is accessible
from spectroscopy. The results of the theory can be ex-
pressed as a sum over Matsubara frequencies [4]. However,
one can isolate the zero Matsubara frequency and recognize
that the corresponding contribution is both temperature de-
pendent and independent of #; it is purely classical and de-
pends on the static dielectric constant, e(w=0). The forces
derived from all other frequencies depend on dynamic dipole
fluctuations and require information on the frequency depen-
dence of the dielectric permittivity. For biophysical systems,
mainly composed of water and lipids, Ninham and Parsegian
[5,6] have shown that zero frequency gives a contribution to
the interaction which is at least as important as the interac-
tions coming from the UV region of e€(w). This feature
makes biological materials rather unique, and justifies the
study of the zero frequency contribution alone. Zero Matsub-
ara frequency forces go under different names including
static van der Waals forces [7], classical thermal Casimir
forces [8], and Keesom interactions. For the simplest geom-
etries one can calculate the free energy analytically [9,10].

For more complex geometries this problem has been ap-
proached from various directions, both in its full quantum
formulation, and in the high temperature, classical, regime.
The range of techniques used is very wide, including Green’s
function formulations [11], worldline numerics [12], and
path-integral formulations [13]. These techniques have al-
lowed for great progress in linking the theory with experi-
mental observation, but, as of now, no general method is
available for arbitrary geometries and arbitrary values of the
parameters.

Recently, there has been a renewed interest in Casimir
forces among soft condensed matter physicists as it was rec-
ognized that these forces can play an important role in bio-
physical systems [7,8]. Ninham and Parsegian observations
have opened the road for new formulations of dispersion
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forces that focus exclusively on their classical part. Dean and
Horgan showed how to calculate the free energy using a
classical partition function without the machinery of Matsub-
ara frequencies [8]. This formulation has the advantage of
making the physics more transparent, as thermal effects are
considered explicitly from the start, rather than obtained as a
limiting case of a quantum theory.

In order to address a wider variety of geometries than is
possible analytically, we introduce numerical methods that
can be used to study thermal Casimir forces on a lattice. The
latter should be thought of as a mathematical discrete grid
with no physical meaning. It is introduced to implement the
numerical algorithms, and its spacing should be much
smaller than the typical size of the system under investiga-
tion. In particular we address the nature of the various terms
appearing in the free energy of a dielectric system and study
their variation with the discretization. This corresponds to
the issue of regularization of divergences in a continuous
infinite system. We apply our methods to a set of rectangular
and sinusoidal grooves in order to characterize both longitu-
dinal and transverse Casimir interactions.

In this paper we are interested in computing the free en-
ergy due to thermal fluctuations of the electrostatic field be-
tween dielectric bodies. In this classical perspective, as noted
above, the dielectric permittivity € is taken to be a function
of space, €(r), but not a function of frequencies, i.e., €(r,»
=0). Our main goal is to develop a formalism which is a
suitable starting point for efficient and versatile numerical
methods, which can be applied to arbitrary geometries. Con-
sidering the classical, time-independent regime alone, allows
us to present the general formulation and the numerical ap-
proaches on the simplest system. After a calibration which is
run with convenient but nonphysical values of €(r), we focus
on systems with physically relevant material properties, that
is systems for which the optical properties of the object im-
mersed in water match those of water. This is the case if we
choose a material whose refractive index is similar to that of
water, n~ 1.3, giving a dielectric constant for the material of
€nar=1.7, While €y o~ 80.

In separate works we extend our approach to quantum
regimes, considering the full dielectric function €(r, ) [14].
There, we also compare our method with other discretized
numerical approaches that have recently appeared [15]. We
note also the existence of a second regime where thermal
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interactions can dominate even in the absence of matching of
optical properties [16]; separations L satisfy L>fic/(2kgT).
This case is only relevant when L>4 pum and will not be
discussed further here.

The paper is organized as follows: In Sec. II we discretize
a set of dielectrics and derive the main theoretical results; in
Sec. IIT we study the discretized system using matrix diago-
nalization and Monte Carlo simulation. In Sec. IV we present
a continuum calculation which derives the free energy of a
single homogeneous slab with periodic boundary conditions.
This result is compared to the numerical results in Sec. V,
where we also show how the numerical methods can be used
to calculate the free energy for grooved surfaces.

II. LATTICE FORMULATION

The free energy of a dielectric in the absence of free
charges is calculated from the partition function [17]

Z:JD[D]H S(V-D)e P, (1)

with D(r) the electric displacement. The Boltzmann factor is
the electrostatic energy in the presence of a dielectric me-
dium U= [[D*(r)/2€(r)]d’r. Gauss’ law V-D=0 is imposed
in Eq. (1) as a constraint. In the continuum limit, and also in
infinite volume, Eq. (1) is ill defined, as it contains diver-
gences. We thus discretize in order to find an unambiguous
definition of the free energy. We will then remove contribu-
tions to the free energy that diverge when the system size
diverges, or mesh size is taken to zero, in order to calculate
the remaining long-ranged contributions to the free energy.
We use a cubic lattice of N nodes and 3N links. Since we
are discretizing a macroscopic theory our lattice is not re-
lated to a physical atomic lattice. To be meaningful the lattice
spacing should be large compared to atomic dimensions (so
that one can discuss electrostatic interactions in terms of a
dielectric constant), but small compared to the physical sys-
tem at hand. The specific value of the lattice spacing can be
varied until convergence is achieved. We illustrate this point
in Fig. 4 and related discussion where we compare numerical
and theoretical results. For simplicity of notation we set the
lattice spacing equal to 1 and work in arbitrary units all
through the paper. Physical results depend on the ratio be-
tween the size of the bodies and their separation. Dimen-
sional information can be reintroduced by standard scaling
arguments. Physical quantities are associated with nodes or
links; scalars “live” on nodes, vectors on links. Thus D, is
assigned to the link leaving the node n in the positive x
direction. The discretized divergence V-D gives the total
flux at a lattice site. The dielectric permittivity € is also as-
sociated with the links so that the discretized energy density

p? D2 D?
takes the form ;- +52+5_. On a lattice, Eq. (1) becomes
N-1 2
D
z=fp[1)]< IT 8v-D) |exp -'[—32 —l>, ()
nodes 2 links €l

where ¢ is the permittivity associated with the link /. Notice
that in periodic boundary conditions we impose N—1 & func-

PHYSICAL REVIEW E 77, 016705 (2008)

tions; the constraint on the Nth node is automatically satis-
fied when N—1 are imposed since [V-Dd’r=0.

We impose Gauss’ law by introducing an auxiliary scalar
field p={¢,},=1 n as a Lagrange multiplier, using the iden-
tity

emV 1 5(V.D)=fD[¢]exp(-i2 SV .D>. 3)

nodes nodes

It was shown in [18] that ¢ is the static electrostatic poten-
tial. This identity involves the product over all N nodes, so
we must introduce an extra constraint &(¢y) to remove the
integral over ¢y. Dropping irrelevant prefactors, Eq. (2) be-
comes

2
Z:fDM]D[D]exp(—gz &>5(¢N)

links €l

N
x T1 exp(—=i¢pV - D). “4)

nodes

The scalar field ¢ is conjugate to V-D and is associated with
the nodes. We integrate over the field D in Eq. (4) and find
an expression in terms of the field ¢. From here on we as-
sume =1, or equivalently we absorb the temperature in the
units of energy.

Z=<H e}”) f D(¢)5(¢N>exp(—%2 e1<V¢)2). (5)

links links

Equation (5) reduces the problem to that of calculating the
partition function of a single scalar field with e-dependent
gradient energy [8]. The only subtlety is the 5-function term
in the measure. We will see below that its effect is to remove
the integration over the constant mode and to contribute an
extra overall volume factor.

Equation (5) leads to a free energy containing several
kinds of contribution. We wish to understand the lattice de-
pendence of the various terms and remove those that diverge
as we go to the continuum limit and scale as (V/s%), where V
is the volume and s the lattice spacing. What remains after
taking care of these divergences corresponds to surface in-
teractions [8,10]. To separate these contributions we rescale
¢to f’é with y an arbitrary positive function that is associated
with nodes. Then, from Eq. (5),

2= 114" 11 s | I ao)of 2

links nodes nodes V XN

Xexpl_ 'y e,(vi;ﬂ. )

links VX

We now focus our attention on the integral and on the re-
maining 6 function. The first step is to recover simple Gauss-
ian integrals by an orthogonal change of variable that makes
the exponent diagonal. We write ¢, =>«,a;, with n running
over nodes, i=0...N-1, and «,; are expansion coefficients.
Then, the integral in Eq. (6) becomes
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= f (Nrf da[)exp(— ;xé)a(%EaiaW), )

i=0 VXN i

where the \; are the eigenvalues of the operator
(—L—V eV L—) and a; are normalized eigenvectors. The lowest
. X X .
eigenvalue, \y=0, corresponds to the field configuration ¢
=N\, since for this configuration the gradient in the expo-

nent acts on the constant vector. The normalized eigenvector

. (X1:VX2- -V XW) . .
is Vo= W Thus, the A\, expansion coefficient of ¢y

is aoy=\xn/ (Zix)".
We now integrate over q

[:( > X>1/2f <H dai)exp(— \a?)

nodes i#0
1 1 —1/2
=(E X>”2det*<—?v -EV?> , (8)
nodes VX VX

where the det” indicates the product over nonzero eigenval-
ues. Thus

(1)) 5

links nodes nodes
N 1 1 -1/2
X det (——FV -ev?> . 9)
VX VX

We will now choose y to factorize the partition function into
extensive terms and nonextensive terms, separating the terms
that diverge in the continuum limit from those that remain
finite.

We specialize to the case of interfaces between uniform
dielectric materials. We discretize as follows. When a vertex
belongs to a slab of material, all three links departing in the
positive direction from that vertex belong to the same slab.
Thus, for a plane geometry, a slab of thickness a=1 contains
one plane of L? vertices and 3L? links. This definition is not
left-to-right symmetric, but it is convenient for periodic
boundary conditions, as a slab of thickness a of € on a
background of ¢, is the same as a slab of thickness a’'=L
—a of € on a background of €;. We now chose y as x,
= %(enx+ €,,+ €,.). For a system where € is piecewise constant
this implies choosing y=e.

From Eq. (9) we find the free energy, F=-In Z,

1 1 1
f:—_E 1H€1+§2 1116,,—511'1(2 6”)

2 links

nodes nodes
1 % 1 1
+—-Indet | -—+=V -eV—=|. (10)
2 Ve Ve

The choice y=¢€ leads to the last term in Eq. (10) which is
homogeneous of degree zero in €. Thus scaling all values of
the dielectric constant by a factor leaves this contribution
invariant. The other contributions contain € dependent terms
which scale as N, or In NV, giving divergences as V or In V in
the infinite-volume limit. If we take the continuum limit
keeping the volume finite, but sending the lattice spacing s to
zero, these terms diverge as 1/s° or Ins. The determinant
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also has short-distance divergence in V, but this is indepen-
dent of € and it is the same for all systems. It arises from the
short-distance behavior of the operator —€ 2V .eVe /2,
which in all regions where € is a smooth function of r is the
same as the short-distance behavior of the operator —V?2. This
contribution is the free energy of the vacuum. It can be sub-
tracted defining F,,,=F—7 Indet (-V?). In this paper we
will be working with constant total volume, so this term can
be ignored. We discuss these issues in detail in Sec. IV. The
surface free energy is the last term in Eq. (10); it only con-
tributes when € varies at an interface. We therefore define

1 1 1
Fsup= = In det' (- =V -eV— det” (- V?) |.
2 Ve Ve

(1

This interaction depends only on the ratio between the dif-
ferent dielectric constants of the uniform components of the
physical system. For the water/lipid systems we wish to
study this ratio is ~1.7/80~50, we can then equivalently
choose in our numerical codes €;=50 and €,=1. Expression
(11) is free of short-distance divergences in any region where
€(r) is smooth, since in those regions the short-distance be-
havior of the numerator and denominator of Eq. (11) are the
same. However, if € undergoes a sharp transition at a surface,
there is an additional divergent contribution which can be
ascribed to the self-energy of the interface between the two
regions; a sharp interface affects modes of arbitrarily short
wavelengths, therefore the large eigenvalue asymptotics of
the numerator and denominator of Eq. (11) do not cancel.
This divergence is qualitatively different from the volume
divergences discussed earlier in this section. While the latter
are the same in any continuum field theory and are usually
dealt with using renormalization theory, the surface self-
energy divergence is related to having defined the field
theory on a singular background in which e(r) is discontinu-
ous [19,20]. In real physical systems treating the dielectric
constant as discontinuous is an oversimplification; any tran-
sition between two materials occurs over a small, but finite,
distance. On the lattice, the lattice spacing gives a natural
cutoff and the contributions coming from the surface self-
energy scale as 1/s2. In this work we focus on the interaction
energy between separate surfaces, so we will subtract the
surface self-energy by taking free energy differences be-
tween systems where the surfaces are rigidly translated but
do not change shape.

Equation (10) is the fundamental equation we will use
when extracting the surface interaction from the numerical
results. We first determine the full partition function directly,
either by matrix diagonalization, or by Monte Carlo simula-
tion. Using Eq. (10) we extract the pure surface interaction,
Eq. (11), by subtracting the extra terms in Eq. (10), which
depend on the volume of the system and/or on the lattice.
Explicitly,

]:Su(f~=.7-'+12 ln(e)—%z 1n(e)+%ln<2 E),

2 links nodes nodes
(12)

where for simplicity we do not include the vacuum contribu-
tion from —V2.
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III. NUMERICAL EVALUATION OF FREE ENERGIES

We now compare two methods of evaluating the free en-
ergy, Eq. (10), of the discretized system. The first method is
a direct evaluation of the determinant det*(—\l—V -eV \L—)_m.
The second is an implementation of the Monte Carlo algo-
rithm, introduced in [21]. We consider a cubic box of side L,
with periodic boundary conditions, with a cubic lattice of
spacing s=1.

For small systems we evaluate the determinant
det*(—%(V-eV%()_m with standard matrix methods. If we
set y=1, the partition function (9) then takes the form

Z= ( I1 61/2)L3/2 det’ (- V. V)12, (13)
links

We write the exponent in Eq. (5) as a symmetric matrix
acting on the field ¢, 2,,,4,,%:M;;¢;, where the nonzero ele-
ments of M are given by

6
Mi,i= E Gi,nm
nn=1

Mi,nn =- 6i,nn7 (14)

where ¢; ,, indicates the value of the permittivity on the link
connecting site i with the nearest neighbor in consideration.
M is a symmetric matrix of dimension L* X L>.
The determinant is calculated as the product of the eigen-
values of M, A;. The free energy coming from
% .
det (-V-€V) is

L3-1

1
Foo = +52 InA,;, (15)

i=1

where now the sum extends only from i=1 to exclude the
eigenvalue Ay=0. The free energy, from Eq. (13), is then

1
F=Fau=5[ 2 e-@)). (16)
links

Comparing Egs. (16) and (12), we see that the surface free
energy is

1 1 1
Fsurf=Faer = 2 > lne+ 2 ln< > e) ~3 In(L?).

nodes nodes
(17)

The last thing we need to take care is the constant, €
independent contribution In det"(=V?), which was discussed
in Sec. II, that represents the vacuum contribution (see also
the Appendix for details). We can subtract this term by hand
by computing it explicitly, or equivalently always consider
free energy differences. We adopt the second strategy, so that
the constant factor In L? entering in the last term of Eq. (17)
can also be ignored.

As an alternative procedure, we have used the method of
[21] to measure the free energy using thermodynamic inte-
gration and Monte Carlo simulation. We sample the partition
function (2) using a collective worm algorithm [22] to update
the field D. We obtain free energy differences between two
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FIG. 1. One slab geometry.

systems: the one under study, and a reference system. In
order to avoid surface divergences, the reference system has
to be chosen as a rigid translation of the original system. In
the example of parallel planar slabs, that we are going to
analyze in detail, we take as “reference” the system where
the surfaces are at maximum distance (i.e., L/2, in periodic
boundary conditions).

The free energy obtained by the simulation, F;,, gives
directly an evaluation of the left-hand side of Eq. (10). Using
Eq. (12), we conclude that the surface contribution is

2 In(e) + E E In(e)

1
A-7:51” = A‘7:Sim - A|:_ .
4 2 links 2 nodes

—%m(}‘, e):| (18)

nodes

IV. ANALYTIC RESULTS

The above discretization methods can be applied in arbi-
trary geometry. To calibrate them we will apply them to a flat
slab, and compare the results with an analytic expression for
the surface free energy, Eq. (11), in the continuum limit. We
consider a single-slab piecewise uniform system, periodic
along the direction perpendicular to the slab, and infinite in
the two transverse directions. Its geometry is shown in Fig.
1. Analytical results are well known for the similar system
which is infinite in all three directions [8—10], but, to our
knowledge, the result we derive here for the periodic system
iS new.

Starting from the constrained partition function on the
continuum, Eq. (1), we derive the free energy of the periodic
system following a procedure similar to [9,10]. However, our
derivation does not extract the classical result as a limit of a
quantum system; it considers the classical system from the
start. We believe that in such treatment the physics is more
transparent and we are able to better control issues such as
subtraction of divergences which, as we have seen, are im-
portant for the comparison of the analytical results with nu-
merical data. In particular, since the final expression we de-
rive is free of divergences, but the starting point, Eq. (1), is
not, we have to make sure that the finite quantities we cal-
culate are consistent with the corresponding finite quantities
defined on the lattice and computed through the numerical
methods. We will show that expression (11) is essentially
finite (i.e., up to the—unphysical—divergent surface self-

016705-4



NUMERICAL METHODS FOR FLUCTUATION-DRIVEN...

energy that appears in singular backgrounds, that will be
discussed separately), so it is meaningful to compare it with
numerical results.

We will compute the free energy per unit transverse area.
This quantity stays finite in the limit of infinite transverse
size, and is defined, following Eq. (11),

1 det*(— €?VeVel?

Fore="71 = 19
Suf= o2 " det” (= V?) (19)
1
=—2[Tr* In(- €2V eV el?)
Lt
* 2
-Tr In(-V?)], (20)
=F-Fo, (21)

where L, is the linear dimension of the system along the
uniform directions, and the limit L,— % is understood.
Determinants are cyclic invariant so that det(— €'VeV)
is equivalent to det(—e >V eV e!?). In our test case, we
find it more convenient to evaluate
I »
F=—7=Tr In(-€e VeV). (22)
2L,
Let us consider the geometry in Fig. 1, with &(r) piecewise

constant. We take our system to be periodic on (-L 5 2) The
surface of the slabs are perpendicular to the z axes. We sepa-

rate  the eigenvalue equation  writing  {x,y,z)
=e/PrtiP Y (7), with
€'(ep” - 0.€) b= A, (23)

2_ 2, 2
and p°=p;+pj.
The eigenfunction along z is taken separately in the three
regions,

Po(2) = A e+ B e, (24)

with @=1,2,3. Integrating the eigenvalue equation over a
small interval we find that ¢ satisfies the same boundary
conditions as the scalar electrostatic potential ¢:

() =, (2), (25)

G_ﬂlﬂ_(z) = €+f9¢+(2) > (26)

which are derived by integrating Eq. (23) across the bound-
aries. Here, + and — refer to the left- and right-hand side of
the interface.

Equation (23) gives p*+p?=A and p*>+¢*>=A, from which
we immediately deduce p=g. Moreover, we notice that A
has to be real and positive. Indeed, consider an &(r) every-
where positive, with the eigenvalues equation —(VeV )y
=eAy. Then, 0<[eVy{==[y) (VeV)y= V[ (eV )]
The last integral is zero because of the matching condition
(26), leaving us with 0<—[¢" (VeV)y=A [ € ¢>. As a con-
sequence g has to be either real or purely imaginary, and in
the latter case |g| <p.

Inserting the functions (24) in the eigenvalue equation
(23) and using the boundary conditions, we find
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. Re(q)

¢
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FIG. 2. (Color online) (a) Contour of integration. The zeros of
Q(q) are the big X’s. (b) Contour after integration by parts.

( € - 60)2 1 —cos[g(L -2a)]

=1. 27
€+ € 1 —cos(gL) @7)

This equation determines the eigenvalues ¢, of the effective
one-dimensional eigenvalue problem, Eq. (23). The surface
contribution to the free energy per unit area from Eq. (22) is
[27]

F 1T1[
=——TrlIn|-
217

t

—# d2p E In(p? +q2), (28)

€'(eV? + 0,€0,)]

where ¢g,,’s are the solutions of Eq. (27). The extra factor 2 in
the integrand of the last expression comes from the consid-
eration that the transformation ¢ — —q leaves both Eq. (27),
and the wave function (24), invariant up to a renaming of the
coefficients. Summing over all solutions of Eq. (27) requires
dividing by 2 to avoid double counting. An equation similar
to Eq. (28) holds for F, that we need to subtract, with the
q,’s replaced by the appropriate eigenvalues for the uniform
system.

In the Appendix we show that the free energy, Eq. (20),
can be written in terms of a “spectral function” on the com-

plex g-plane, O(q)

) ar 2 QQ(k)
fsurfffo 16772Jd§ 1( k)Q(k)

(29)

where the integration contour y encloses all the complex
solutions of the eigenvalue equation (27), for example the
path shown in Fig. 2(a), chosen in such a way that it avoids
the branch cuts (—i%,—ip) and (ip, +i%°) from the logarithm.
For the single-slab configuration, the appropriate function is
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0(g)=1- < € - 60>21 —cos[g(L - 2a)]. (30)

€ +¢ 1 —cos(gL)

As shown in the Appendix, this choice corresponds to sub-
tracting the energy of uniform empty space, the second term
in Eq. (20).

To arrive at an explicit expression for Eq. (29), we first
rewrite the argument of the p integral,

LLIEIPN G0
f(p) = § T G

Rather than evaluating directly f(p), let us calculate its de-
rivative,

d_ [ dk 2 QW [ dk 2 d
dpf(p)"ﬁzmp%kz ) "% mio+ 2k ™ eR)

(32)

The integral along the large circle at infinity vanishes, and
the only nonzero contribution comes from the paths along
the imaginary axis. We deform the contour to two circles
enclosing the two poles in +ip, as shown in Fig. 2(b).
Equation (32) is evaluated using the residue theorem

%—fmmw+imgew (33)
whence
f(p)=21n Q(ip) +2f, (34)

where f is an integration constant, and we have used Q(q)
=Q(—¢q). Inserting Eq. (34) in Eq. (20), we obtain

1 o0 s [°e)
fsMrf=4—f pan(ip)dp+if pdp. (35)
) 4 ),

The last term is still quadratically divergent. If we introduce

a cutoff w in momentum space, the last integral is 0(}7(1)2),
the same scaling as a short-distance surface divergence. This
is the explicit manifestation of the divergent surface self-
energy described in Sec. III, and it is caused by the singular
background, characterized by a sharp transition in the dielec-
tric profile. This divergence can be subtracted by setting the

integration constant f=0, as it does not depend on the dielec-
tric constants. Notice however that the divergence will de-
pend, in general, on the shape of the surfaces considered, so
if we want to compare the free energies of systems whose
interfaces have different geometries, we must treat this diver-
gence more carefully. The self-energy can be interpreted as
the finite tension of the surface interface, and one has to take
it into account if one wishes to treat the surfaces dynami-
cally.
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Setting the last term in Eq. (35) to zero we find

l oo
Fsurf= e f pIn Q(ip)dp. (36)
0

Equation (36) is gives us the free energy once we know the
eigenvalue equation. In the Appendix we show how the
choices we made uniquely determine the function Q(g) as its
zeros correspond to the solutions of the eigenvalue equation,
and its poles correspond to the eigenvalues of the uniform
system. These two requirements are equivalent to asking that
the subtraction we performed to arrive at Eq. (36) is exactly
the second term in Eq. (20).
Using Eq. (30), the surface free energy becomes

1 (~ € — 60)21 —cosh[p(2a—L)]
Forr=—| phn|1- d
Surf 477[0 P n{ (61+60 1 —cosh(pL) P

(37)

The integral over p is finite for separations a>0; the inte-
grand varies as pe~2% for large p. Thus the surface free en-
ergy, Eq. (11), is free of short-distance divergences and can
be used in numerical computations.

In the limit L—o, Eq. (37) reduces to [8,23] Fg,r

f 5 pln[l (61 +E) ‘2"“]dp The method of this section
and the Appendlx can be extended to systems composed of
an arbitrary number of slabs through the use of transfer ma-
trices [23].

V. NUMERICAL RESULTS

We used both matrix diagonalization and Monte Carlo
simulation to study the slab geometry of Sec. IV in order to
calibrate the numerical methods and evaluate discretization
errors. We first consider a volume V=123 with lattice spacing
s=1. The dielectric constant of the slab is €,=2 with back-
ground dielectric constant €y=1. These values of € do not
correspond to any interesting physical system, and are far
from the 1:50 ratio we seek when studying water/lipid sys-
tems. However one of the methods with which we wish to
compare (Monte Carlo simulation) becomes inefficient for
large dielectric contrasts. It is thus more convenient to work
with reduced contrast in order to compare results.

The matrix diagonalization is performed using the built in
methods of MATLAB. It requires about one minute on a
2 GHz workstation to calculate the free energy as a function
of the gap G, with G=1,...,11. The Monte Carlo simulation
was run with 40 points for the thermodynamic integration.
For each gap measuring the free energy requires about one
hour of simulation. Figure 3 shows that the agreement be-
tween the two methods is within error bars.

The difference in computer resources needed in these two
calculations of the free energy shows that Monte Carlo is not
the best method for studying the large distance tails of the
interaction between dielectric media. The surface interac-
tions we want to measure are three to four orders of magni-
tude smaller than the self-energy; their extraction requires
extremely precise measures which are hard to achieve with
statistical evaluations. We can estimate the scaling of the
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gap

FIG. 3. AFg, as a function of surface separation from matrix
diagonalization (solid) and Monte Carlo (points). The free energy is
measured in arbitrary units where the lattice spacing is taken to be
1. The system size L=12, ratio between the dielectric constants is
€y:€;=1:2. The reference system is taken to be a system with
maximal slab thickness, i.e., a’=L/2.

resources needed in Monte Carlo as follows: The interaction
between two interfaces scales as L%/ G2=0(1), which is to be
compared to the volume free energy which scales as O(V).
Thus we require O(V?) Monte Carlo sweeps of cost O(V) to
generate statistically useful results for a single integration
point. In addition, as the system size grows, more simula-
tions points are needed for the thermodynamic integration.
Considering all these factors, we see that the Monte Carlo
method requires an effort that scales worse than L°.

Matrix diagonalization is not affected by statistical noise.
The complexity is dominated by the evaluation of the deter-
minant: O(V?)=0(L°) with dense matrix routines. The real
constraint for matrix diagonalization turns out to be the
memory required for holding dense matrices. With 1 GB
memory available for computation, using standard routines,
the largest system size we can consider is L,,,,.~ 25; memory
usage scales as O(V?)=0(L). In order to study larger, more
interesting systems we now specialize to objects which are
translationally invariant in one direction. Because of the
symmetry one can then use Fourier analysis to simplify the
numerical problem. When we do this we find that we need
only find the eigenvalues of a matrix of dimensions L?X L?
instead of L3 X L3.

We write ¢=Eq_¢§ql)¢>i‘ff), where d)iqz) are plane waves

with ¢.=2mn/L and n=0,1,...,L, corresponding to the ei-
genvalue 2[1-cos(g.)] on a periodic lattice. Using this form
for the eigenfunctions we find

dMp=2, ¢\ M(q,) (38)
qz

where the nonzero elements of the reduced matrix M (q.) take
the form

4
Mi,i(qz) = E €inn + 261[1 - COS(C]Z)],

nn=1
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FIG. 4. Ratio of F,, computed from the analytic formula, Eq.
(37), and F,, calculated from the matrix. The transverse dimensions
are L,=L,=60, while the longitudinal direction is L,=30. For this
system ed: €,=1:50.

Mi,nn(qz) =- 6i,nn’ (39)

and Indet” M =2, In det” 1\7I(qz). The sum over nearest
neighbors runs onl§ along the x and y axes, €, indicates the
value of € along the uniform direction z. Using this approach,
the new limit in size due to memory constraints becomes

I?max=Lf,{‘2Lx~ 125. However, in this case, computing time be-
comes the ultimate limiting factor because the determinant
evaluation has to be performed L times, once for each g,
requiring an effort O(L’). A system size of about L=50 is the
largest system we can consider on our same 2 GHz proces-
sor, which leads to evaluating the determinant in about one
hour.

We used this technique to compare the result obtained
with matrix methods to our analytical calculations. Our ana-
lytic result, Eq. (37), is valid in the limit that the transverse
directions of the system are large compared to the longitudi-
nal direction. We thus study a system of dimensions 60
X 60X 30, where the smaller number refers to the longitudi-
nal direction, and compare it to Eq. (37) for €;=50 and ¢,
=1. Results are shown in Fig. 4 where we have plotted the
ratio of the analytical result over numerical result as a func-
tion of surface separation. We see that the agreement is rather
poor for the smallest separations, as might be expected in a
discretized system. For larger gaps the agreement signifi-
cantly improves.

We now use the Fourier-matrix method to study the inter-
action between parallel grooves in dielectric surfaces. Using
microfabrication techniques such grooves are easy to manu-
facture; recent theoretical studies have investigated the ef-
fects of corrugations on quantum Casimir free energies
[11,24]. We also note that one can study the Casimir energy
as a function of lateral phase shift between the groove cor-
rugations. Experimental evidence for lateral force was pre-
sented in [25].

For sinusoidal grooves analytic results were found using a
second-order perturbation in the amplitude parameter, while
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for rectangular grooves an exact numerical solution was
found. The effect of corrugation wavelength and amplitude
in relation to surface separation was investigated and it was
found that for corrugation lengths much bigger than gap G,
proximity force approximation (PFA) works well while in
the limit of corrugation lengths much smaller than the am-
plitude, a small distance regime is reached [26]. The first
correction term to the parallel plate free energy, o=F/F
—1, was determined. It was found that in the limit of the
corrugation length A> G the correction § to the Casimir en-
ergy depends only on the corrugation amplitude, and it is
proportional to G~!. In the opposite situation of N<<G the
correction to the energy depends on both wavelength and
amplitude and 6~ G2

Our numerical approach is valid for any groove profile, or
indeed with any 2+ 1 dimensional interfacial profile, and for
all separation regimes. We first consider the interaction of
rectangular groove and a planar interface. We analyzed the
dependence of the free energy on the corrugation wavelength
N\ and on the surface separation G. In accordance to the ana-
lytical results for quantum Casimir, in the limit A>G we
find the proximity force approximation gives results in
agreement with our numerical results. According to this
widely used approximation, one considers the interaction of
a small portion of the surface with a corresponding portion
on the other surface which sits vertically above, assuming
the surface is locally flat. The interaction between the two
“plaquettes” is taken as the interaction of two parallel sur-
faces at the same vertical distance, and the contribution from
all plaquettes is then added to obtain the total interaction. In
a system of V=403, for the particular case of groove depth
H=4, and gap G=06, at maximal wavelength A =20 the agree-
ment between the PFA prediction and the direct numerical
result is around 90%. As N becomes smaller and comparable
to the gap, the agreement drops to less than 20%. We have
also investigated the free energy behavior in the limit A
< G. We have indications that, as in the quantum system, the
correction term & goes as 1/G, but in order to be more cer-
tain one would need to study a larger system where ratios
G/\~ 10? can be reached.

We now consider a sinusoidal groove, Fig. 5, with system
size L=46, amplitude of oscillation a=6, wavelength L. The
minimal distance G,,;,, between the grooves is reached when
their relative phase is 7, and is equal to 1. In this configura-
tion the vertical distance between the surfaces varies from
G,in=1to G,,,,=25. The shift S is measured in units of the
lattice spacing as the displacement from the position where
the grooves are perfectly aligned. Letting the top groove shift
laterally over the bottom groove from the S=L/2 configura-
tion (shown in Fig. 5) we measure the free energy as a func-
tion of the shift, F(S). F(S) gives information about lateral
Casimir forces. When looking at the effect of the shift one
expects the free energy to vary because the distribution of
vertical distances changes as one groove is laterally dis-
placed. Indeed when the shift is zero all the points of the
opposing grooves have the same distance 2a+G,,;,, while for
S=L/2, the distance between any two vertically aligned
points varies from G,,;, t0 G,,,x=G,..,+4a. But beside this
projection of the vertical Casimir interaction along the direc-
tion of the displacement, one expects to also detect lateral
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FIG. 5. Large sinusoidal grooves at S=L/2. The dashed profile
indicates the position of the lower surface in the configuration S
=0.

interactions between curved surfaces. Due to the nonadditiv-
ity of Casimir forces, and because of the large deformation
of the groove with respect to the flat geometry, these two
contributions cannot be disentangled. In Fig. 6 we present
the results obtained with the reduced matrix diagonalization
method, that gives the global interaction, and compare it to
PFA, that only considers the effect of the local vertical dis-
placement. PFA underestimates the free energy by factors
that vary from around 10% when the grooves are mirroring
(phase shift ), up to 40% for phase shifts close to zero. This
is what one would expect since PFA fails to consider collec-
tive effects, which are more important when larger positions
of the surfaces are close. These violations of the proximity
force approximation are not peculiar to the classical regime
and similar effects are also found for the quantum system for
significantly nonflat geometries [11,12].

VI. CONCLUSIONS

We have presented a formulation of fluctuation induced
interactions between dielectrics discretized to a lattice. We
analyzed how the contributions to the on-lattice partition
function depend on the discretization and on the volume, and
we have derived an appropriate definition for the surface
interaction, which stays finite in the continuum limit. We
compared two numerical methods to compute the free energy
of surface interactions. The first is a direct evaluation of the
matrix determinant. The second is a Monte Carlo simulation
together with thermodynamic integration.

While the constrained partition function allows the simu-
lation of systems including full long-ranged Casimir interac-
tion it turns out to be a rather inefficient method for extract-
ing the asymptotic interactions between bodies. The
nonextensive surface interactions are rather easily lost in sta-
tistical noise. We consider that the use of matrix methods has
considerable promise. Already interesting problems can be
studied in the 2+ 1 dimensional translationally invariant sys-
tems, such as grooves, or blades. We note that we have only
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FIG. 6. Free energy as a function of phase
shift measured in arbitrary units where the lattice
spacing is equal to 1. For this system the ratio
between the dielectric constants is 1:50.
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used the simplest dense matrix methods. We anticipate that
the use of more specialized sparse matrix solvers should al-
low the study of larger physical systems, without the require-
ment of translation invariance in one dimension.

Generalizations including the study of more elaborate di-
electric functions that include scale dependent dielectric re-
sponse [17] as well as quantum effects will be presented in
future papers.
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APPENDIX: REGULARIZATION OF ULTRAVIOLET
DIVERGENCES

In this appendix we analyze the short-distance diver-
gences in the parallel plate geometry discussed in Sec. IV.
We address the subtraction of divergent vacuum energy and
the divergent surface self-energy, showing that the latter
arises from the singular nature of the background.

In the continuum limit, there is always an e-independent
divergent contribution in the free energy which arises from
the existence of modes of ¢ with arbitrarily large momen-
tum. To see this, consider a system where € is everywhere
uniform. The free energy corresponding to det”(-V2) di-
verges as

1
f~52 In\, \,~n> (A1)

40

45

This divergence corresponds to large-momentum modes; it is
present in the single-slab system analyzed in Sec. IV, as the
eigenvalues in Eq. (27) also grow indefinitely.

Consider now the free energy before the subtraction, Eq.
(28),

~ 1 ¢
F= Z—L?Tr* In(-€'VeV) (A2)
- ”d2p12 In(p*+¢7) (A3)
87 J, 2% e

We now write the summation as a contour integral in the
complex plane using Cauchy’s theorem,

> In(p*+47) =3€ d—k, 1n(p2+k2)@, (A4)
" y 27 O(k)

where the spectral function Q(g) has simple zeros [28] for
q=q,, and the integral is over an appropriate contour 7 that

encloses all zeros of é(q). We have used the fact that when-

ever é(q) has a simple zero, é'/ é has a simple pole with
unit residue. Equation (A4) is clearly ill defined, since the
argument of the summation becomes arbitrarily large.

Notice that, if O(g) has a pole of order p at g=g, Eq. (A4)
is invalid, since close to g we have

QN’(q) v (AS)
0(q)

(¢-9)
and we obtain an extra contribution to the right-hand side.
So, even formally, expression (A4) holds only if the spectral
function has zeros corresponding to the eigenvalues of the
problem at hand, and no other zeros nor poles. However we
can see from Eq. (A5) that introducing simple poles g, in the
spectral function is equivalent to subtracting the free energy

F of a system that has eigenvalues ,. In this case therefore
we formally have
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K 0'(h)
; In(p? +q) - 2 In(p? +q,,) = § “In(p® + K5 =~ 00

(A6)

where now Q(g) has g, as zeros and g, as poles. Depending
on the properties of the spectral function, it can happen that
the two terms on the left-hand side are infinite, but the inte-
gral on the right-hand side is finite, so that the expression
(A6), corresponding to the difference in free energies, is
meaningful.

Thus, the free energy difference between a given system
and the vacuum can be written using Eq. (A6), in which

0(q)
00(q)’

where the zeros of Q(g) and of Qy(g) are the solutions of the
eigenvalue equations of the system under consideration and
of the vacuum, respectively, and neither function has other
zeros or poles. Using Egs. (A3) and (A6) we arrive at

Q' (k)
Fo= 16#] dz% Y ow o)’

i.e., Eq. (29) in Sec. IV.
For a uniform system in a periodic box of size L the
eigenvalues are ¢,= =", so we can choose, for example [29],

Qo(CI) =cos(qL) - 1. (A9)

For the single-slab system considered in Sec. IV, the eigen-

0(gq) = (A7)

(A8)

value equation (27) fixes é(q) up to an overall constant,

which can be in turn set by the requirement that Q(g) reduces
to Qy(q) when €,=¢,

) {1 =cos[q(2a-L)]} —[1 - cos(gL)].

(A10)

~ _ € — €
0(q) _(61 pa

The resulting spectral function,
€ - 60>2 1 —cos[g(L - 2a)]
€+ € 1 —cos(gL)
(A11)

0(q) = 0(9)/Qo(q) =1 - (

coincides with the one given in Eq. (30), which as shown in
Sec. IV, when used in Eq. (A8) gives a finite result for the
surface free energy, up to a (subleading) divergence in the
surface tension which will be discussed below.

In Sec. IV we found that we had to subtract an additional
divergence that can be traced to the integration constant in-
troduced in Eq. (33). This originates from Eq. (A8) being
still ill defined; only its derivative with respect to p is finite.
In general however, there are situations when one can evalu-
ate Eq. (A8) directly and obtain a finite result. This is the
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case when Q'(k)/Q(k) vanishes sufficiently fast for large |k|.
Under this assumption, let us go back to the contour integra-
tion along the path shown in Fig. 3(a); we can neglect the
integration over the large circle already at the level of Eq.
(A8), and integrate by parts in the remaining contribution
along the cuts

b ok a0 QR)
flp) = szml n[(p” + &) ]Q(k)

(A12)

At this point, the branch cuts (—i,—ip) and (ip,—i) have
disappeared, and we can again deform the contour to the two
circles enclosing the two poles in +ip, as shown in Fig. 2(b).
Then the residue theorem gives

f(p)=21nQ(ip),

which leads to the finite result, Eq. (36). Notice that this
procedure fails in the example of Sec. IV, since Q(k) defined
in Eq. (30) does not have the required property for large |k|.

The key observation is that, as we showed earlier in this
appendix, Q(k) must be defined in such a way as to subtract
the leading vacuum energy divergence, so that

(A13)

0(k)
Qo(k)’

where Qq(k) is a function giving the vacuum eigenvalue dis-

0(k) = (A14)

tribution, and Q(k) is such that first it gives the eigenvalue
distribution of the system under consideration and second it
reduces to Qy(k) for a uniform system. In all physical situa-
tions, the large momentum modes should always behave the
same as in the vacuum beyond a certain threshold, deter-
mined by the properties of the material under investigation.
Therefore it is natural to assume that in all physical systems,
Q(k)—1 as |k|—c, which automatically guarantees that
Q'(k)/Q(k)—0 for large |k|. In the case of a single plane
slab, it is unphysical to assume that the dielectric constant
changes discontinuously, because that would imply that all
modes, with arbitrary short wavelength, are affected by the
presence of the interface, as one can see from the matching
conditions (26). It is more reasonable to assume that modes
with wavelengths shorter than a certain cutoff & (the molecu-
lar or atomic scale of the dielectric) will not be sensitive to
the difference between the dielectric and the vacuum, there-
fore Q(k) ~ 1 for modes with |k| > 1/ 6. Following these con-
siderations it is clear that the divergence in the surface self-
energy in Sec. IV is exclusively related to the singular nature
of the background under consideration, and that in a physical
system with a smooth dielectric function €(r) the free energy
in Eq. (11) is finite.

016705-10



NUMERICAL METHODS FOR FLUCTUATION-DRIVEN...

[1] H. B. K. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
[2] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv.
Phys. 10, 165 (1961).
[3]J. N. Israelashvili and D. Tabor, Prog. Surf. Membr. Sci. 7, 1
(1973).
[4] K. A. Milton, J. Phys. A 37, R209 (2004).
[5] B. Ninham and V. Parsegian, Biophys. J. 10, 646 (1970).
[6] V. Parsegian and B. Ninham, Biophys. J. 10, 664 (1970).
[7] R. Netz, Eur. Phys. J. E 5, 189 (2001).
[8] D. S. Dean and R. R. Horgan, Phys. Rev. E 71, 041907 (2005).
[9] N. G. V. Kampen, B. R. Nijboer, and K. Schram, Phys. Lett.
26A, 307 (1968).
[10] B. W. Ninham and V. A. Parsegian, J. Chem. Phys. 52, 4578
(1970).
[11] R. Buscher and T. Emig, Phys. Rev. A 69, 062101 (2004).
[12] H. Gies and K. Klingmiiller, Phys. Rev. Lett. 96, 220401
(2006).
[13] J. Feinberg, A. Mann, and M. Revzen, Ann. Phys. 288, 103
(2001).
[14] S. Pasquali and A. C. Maggs, e-print arXiv:0704.2171.
[15] A. Rodriguez, M. Ibanescu, D. lannuzzi, J. D. Joannopoulos,
and S. G. Johnson, Phys. Rev. A 76, 032106 (2007).
[16] B. W. Ninham and J. Daicic, Phys. Rev. A 57, 1870 (1998).
[17] A. C. Maggs and R. Everaers, Phys. Rev. Lett. 96, 230603
(2006).

PHYSICAL REVIEW E 77, 016705 (2008)

[18] A. C. Maggs and V. Rossetto, Phys. Rev. Lett. 88, 196402
(2002).

[19] M. P. Hertzberg, R. L. Jaffe, M. Kardar, and A. Scardicchio,
Phys. Rev. Lett. 95, 250402 (2005).

[20] R. L. Jaffe, e-print arXiv:hep-th/0307014.

[21]I. Pasichnyk, R. Everaers, and A. Maggs, URL http://
www.pct.espci.fr/~tony/lifshitz/igor.pdf

[22] L. Levrel and A. C. Maggs, Phys. Rev. E 72, 016715 (2005).

[23] B. W. Ninham and V. A. Parsegian, J. Chem. Phys. 53, 3398
(1970).

[24] T. Emig, A. Hanke, R. Golestanian, and M. Kardar, Phys. Rev.
A 67, 022114 (2003).

[25] F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M.
Mostepanenko, Phys. Rev. Lett. 88, 101801 (2002).

[26] T. Emig, Europhys. Lett. 62, 466 (2003).

[27] The replacement L; — (2)~ is understood by writing down
the trace as a sum of diagonal terms on the eigenfunction ¢, ,
with the operators depending on the two transverse momenta p
and p’, and integrating over p’. We find an infrared divergence
of the form 6%(0) which can be regularized introducing a cutoff
in the positions. This gives a multiplicative factor (L,/2)2.

[28] In case of zeros of order p, the the right-hand side must be
multiplied by 1/p.

[29] Notice that this function has zeros of order p=2. This intro-
duces the same extra factor 1/2 as in Eq. (A3).

016705-11



