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We simulate TIP3P water using a constrained Monte Carlo algorithm to generate electrostatic interactions
eliminating the need to sum over long ranged Coulomb interactions. We study discretization errors when in-
terpolating charges using splines and Gaussians. We compare our implementation to molecular dynamics and
Brownian dynamics codes.
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The TIP3P model of water [1] is often used to study the
accuracy of algorithms for atomistic simulation. The model
has a single Lennard-Jones center representing an oxygen
atom together with three charges (−0.834, +0.417, +0.417)
arranged in a triangle. The oxygen-hydrogen bond length is
0.9572Å the angle between bonds is 104.52◦. Accurate sim-
ulation of this model is surprisingly challenging: The bare
electrostatic interaction between oxygen atoms at a separation
of 2.75Å, is over 100 kBT . Small errors in the representation
of the electrostatic potential lead to significant errors in the
total energy due to large cancellations; the binding energy per
hydrogen bond is only 7 kBT .

Many molecular dynamics codes for the simulation of large
numbers of charges are based on Poisson solvers. The codes
interpolate charges to a cubic grid and then calculate the elec-
trostatic energy via fast Fourier transform [2] or multigrid
[3, 4]. The principle difficulty is controlling errors in the
Coulomb interaction using high order interpolation. One re-
quires a relative error of at most ∼ 10−4. In this article we
present a Monte Carlo algorithm for simulation at this level of
accuracy. We avoid solving the Poisson equation by general-
izing an algorithm which generates the Coulomb interaction
between particles using Monte Carlo evolution of the electric
field. Previous codes using this local algorithm have been of
low accuracy, sufficient for the study of lattice gasses [5, 6]
or charges interacting through an implicit solvent [7, 8]. They
were still far from the accuracy needed for the simulation of
TIP3P. This articles considers the modifications necessary to
the algorithm in order to reliably simulate standard atomistic
models.

There were three important sources of error in the energy
functions used in previous work with local electrostatics algo-
rithms [8]:

• use of low order interpolation leading to distorted
charge distributions

• aliasing errors in the lattice Green functions leading to
a self-energy with the periodicity of the lattice

• low order discretization of the lattice Green function
leading to anisotropy in the effective interactions.

In many codes interpolation of charges from the continuum
to the cubic grid is performed with splines. A one-dimension

n-spine is a set of n polynomials of order n − 1. These poly-
nomials give the quantity of charge which is deposited on n
consecutive sites of the lattice as a function of the position
of the particle, fi(x), 1 ≤ i ≤ n. Linear interpolation cor-
responds to a 2-spline. In three dimensions one takes the
product of splines in the x, y and z directions, interpolating
a charge to n3 lattice site, thus fl(r) = fi(x)fj(y)fk(z) for
r = (x, y, z) and l = (i, j, k). Splines have several useful
properties for interpolation: They conserve total charge ex-
actly; they are smooth with n−2 continuous derivatives. With
Fourier solvers splines work well if one takes n ≥ 4 [2].

An alternative to splines is interpolation with truncated
Gaussians [2, 3]. Consider interpolating a unit charge to a
one-dimensional grid with Gaussian interpolation: fi(x) =
exp (−(x − i)2/2σ2)/

√
2πσ. The total interpolated charge

can be evaluated for σ large with the Poisson re-summation
formula: qint =

∑

i fi(x) =
∑

p f̃(2πp) where f̃ is the
(continuous) Fourier transform of fi(x). We find qint ∼
1 + 2 cos(2πx)e−2π2σ2

. Already for σ = 1 errors in charge
conservation are O(10−8). In practice one truncates beyond
λσ where λ ∼ 4 − 5, leading to an additional error which
varies as e−λ2/2.

In order to study the various errors generated with lattice
Monte Carlo algorithms for the electrostatic energy consider
the interaction between two particles placed at r and r′.

U(r, r′) =
∑

l,m

fl(r)G(l −m)fm(r′) (1)

=
∑

p

∫

d3q

(2π)3
f̃(q − 2πp)f̃(q)G(q)

×eiq·(r−r′)+2πip·r (2)

G(l) is the lattice Green function of the interaction between
two sites and G(q), its Fourier transform, has the periodicity
of the Brillouin zone. 2πp is a vector of the reciprocal lattice.
The integral is over all Fourier space. The particles also have
a self energy U(r, r)/2.

Consider the contribution p = 0 in eq. (2)

U0(r, 0) =

∫

G(q)f̃2(q)eiq·r d3r

(2π)3
(3)

If f̃ is Gaussian and G(r) = 1/4πr, G(q) = 1/q2 so that

U0(r, 0) +
erfc(r/2σ)

4πr
=

1

4πr
(4)
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This is the central formula for so called “particle mesh Ewald”
methods [2, 3]. One neglects contributions with p 6= 0 and
calculates the Coulomb energy as a lattice energy, eq. (1),
plus a short range correction. Deviations from eq. (4) oc-
cur if the structure factors are not Gaussian: For splines
f̃ =

∏

α sincn(qα/2) with α = (x, y, z) which has the cumu-
lant expansion f̃ ∼

∏

exp(−nq2
α/24 − nq4

α/2880). Splines
converge for large n to Gaussians of width σ2 = n/12. How-
ever interpolation with splines generates an extra contribution
at q = 0 in eq.(3) due to the term in q4

α in the cumulant. This
leads in real space to an error which decays as 1/r5. The am-
plitude of this error decays rather slowly with n.

The aliasing error comes from the contributions p 6= 0.
Consider, for instance the self energy U(r, r)/2 and the con-
tribution to eq. (2) from p1 = (1, 0, 0). Since f̃(q) de-
cays rapidly in Fourier space the product f̃(q − 2πp1)f̃(q)
is maximum on the boundary of the first Brillouin zone near
q = π(1, 0, 0). If we sum over all symmetry related lattice
reciprocal vectors we find a periodic one body potential

V1 ∼ f̃2(πp1)G(πp1)
∑

α

cos 2πrα (5)

Higher order corrections to V1 come from larger p. We
compare spline and Gaussian interpolation: For a Gaussian
f̃2(πp1) = e−π2σ2

, whereas for a n-spline we find f̃2 =
(2/π)2n ∼ e−0.9n. Requiring f̃2 ∼ 10−4 implies that σ ∼ 1
or n ∼ 10. An implementation using low order splines with
only n = 3 showed strong aliasing artefacts [8]. The sinu-
soidal form of eq. (5) permits simple analytic subtraction, but
we will not pursue this point here.

We now turn to errors in the lattice Green function, G(r).
Coulomb’s law in electromagnetism results from the impo-
sition of a linear constraint, Gauss’ law: ∇·E = ρ, on a
quadratic energy functional: U = 1/2

∫

E2 d3r. Previous
codes that discretized these equations led to the standard 7-
point discretization of the Laplacian operator:

G−1(q) = 2
3

∑

α=1

(1 − cos qα) (6)

Expanding we find

G(q) =
1

q2
+

1

q4

3
∑

α=1

q4
α

12
+ . . . (7)

The presence of terms which involve q4
α/q4 imply a correc-

tion to G(r) which decays as only 1/r3. We now construct
a discretization which converges faster. Consider an energy
which is a quadratic function of P electric field variables Ei

where the subscript includes both positional and directional
information.

UE =
1

2

P
∑

i,j

EiKijEj (8)

≡ EKE/2

We continue with an operator notation for compactness. We
submit this energy to L < P linear constraints, cl

cl ≡
P

∑

p=1

DlpEp − el = 0, ∀l (9)

where Dlp is a discretization of the divergence operator at l
and el is the charge. Stationary points are found by consider-
ing the functional A = UE − ∑

l φlcl. D is a linear operator,
we define the adjoint D∗. The variational equations of E are

KE − D∗φ = 0 (10)

Solving for E in eq. (10) and substituting in the constraint
equation eq.(9) we find a generalized Poisson equation for the
Lagrange multipliers φ

DK−1D∗φ − e = 0 (11)

From this Poisson equation we find that the minimum of the
constrained energy is

Uc = eφ/2 = eGKe/2 (12)

with the Green function G−1
K = DK−1D∗. We make contact

with electrostatics if we recognize that D = div implies D∗ =
−grad, and G−1 = −∇2.

We will now generalize these results to non-zero tempera-
tures and show that the effective interaction between particles
is still described by the Green function GK . The constraints
are now imposed by delta-functions in a partition function

Z =

∫ P
∏

p=1

dEpe
−βUE

L
∏

l=1

δ(cl) (13)

We decompose the field E into generalized “longitudinal” and
“transverse” components by writing E = K−1D∗φ + Et and
change integration variables from E to Et. The partition func-
tion then factorizes

Z = e−βUc

∫ P
∏

p=1

dEt,pe
−βEtKEt/2

L
∏

l=1

δ(DEt)

= ZK × constant (14)

Where ZK is a partition function for particles interacting with
the Green function GK .

Previous implementations [6] took the following forms for
the operators D and K: DE was the flux out of the site l to the
six nearest neighbor sites. K was diagonal, K = δij , leading
to eq. (6). Here we keep the same form for the operator D
but for K we include interactions between neighboring links
on the lattice; for x-oriented bonds of the lattice the energy
function is

UE =
1

2

∑

{

5

6
E2

i,j,k|x +
1

12
Ei,j,k|x(Ei+1,j,k|x + Ei−1,j,k|x)

}

(15)
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with similar expression for the links in the y and z directions.
In Fourier space we find that

K(q) =
1

6
diag(5 + cos qx, 5 + cos qy, 5 + cos qz)

D(q) = (1 − eiqx , 1 − eiqy , 1 − eiqz ) ·
D∗(q) = (1 − e−iqx , 1 − e−iqy , 1− e−iqz )T

where “diag” denotes a matrix with the indicated diagonal
elements, so that

G−1 = D(q)K−1(q)D∗(q) = 12
∑

α

1 − cos qα

5 + cos qα

G(q) =
1

q2
+

1

q4

∑

α

q6
α

240
+ . . . (16)

This form of G leads to reduced artefacts in the lattice Green
function; errors now decay as 1/r5.
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FIG. 1: Scaled error in the pair potential using the energy eq. (16)
for σ = 0.90, 1.0, 1.2, 1.4, 1.6. One particle placed at (0, 0, 0) the
second displaced in the direction (1, 1, 1). Solid lines: Curves for
σ = 1.2, 1.4, 1.6 superpose: errors in G dominate. Also included
a single curve for σ = 1.2 starting at (0, 0, 0.5) which scales in an
identical manner. Dashed lines: σ = 0.90, 1.0. Oscillations, eq. (5),
from aliasing are also important and violate the scaling in σ5.

To calibrate the effective interaction generated by our con-
strained algorithm we numerically inverted the Green function
eq. (16). We take two interpolated unit charges and measured
the potential between them, Figure (1), as a function of σ and
compared with the (exact) Ewald energy, Uw. We find col-
lapse of the error when we plot 4π(U − Uw)σ5 as a function
of r/σ for σ > 1. We conclude that the error in the pair po-
tential can be written in the scaling form

δUG(r, r′, σ) =
1

σ5
V5((r − r′)/σ) (17)

for σ > 1. V5 does depend on the direction of the relative
displacement with respect to the lattice. The error increases
strongly for r/σ < 2, however smaller distances in our sim-
ulations will be within the core of the Lennard-Jones poten-
tial and will not be sampled. Due to the regularity of V5 one

could also improve accuracy of the simulation by subtracting
the error off of the real space potential after parameterizing it
with splines. For σ < 1 aliasing errors are increasingly impor-
tant, adding an sinusoidal contribution to the error as expected
from eq. (5). σ = 1 generates errors in the potential which are
O(10−4).

One simulates a system described by the energy eq. (8) with
the constraint eq. (9) with the Metropolis method by introduc-
ing two independent Monte Carlo updates: Plaquette updates,
which satisfy DδE = 0, consist of the coupled update of the
4 links forming a plaquette [6] of the cubic lattice. On each
of these links the field is modified by the same amount ∆, so
that the flux of E at each node remains constant. With the
addition of nearest neighbor interactions, eq. (15), calculation
of the energy change requires the values of the field from 12
links. Motion of a particle is possible if a local update of the
field is performed simultaneously such that DδE = δρ where
δρ is the localized charge fluctuation.

We implemented a simulation of TIP3P water using Gaus-
sian interpolation due to the superior convergence properties
at higher accuracies. We work in units of the mesh size. Three
dimensional Gaussians, with σ = 1, are calculated as di-
rect products of one dimensional Gaussians each truncated at
λ = 4.3. The three atoms of each molecule are interpolated
together. The small error, O(10−8), in charge conservation is
corrected on the grid point nearest the oxygen atom. In this
way we insure that charge is conserved in the algorithm to
machine precision. We perform a trial move and re-perform
both interpolation and charge correction steps. This gives us
a localized charge fluctuation δρ. We generate a local field
modification in a box enclosing the original and final sites:
We use a δE such that

∑

i δE2
i /2 is minimum while respect-

ing DδE = δρ. Outside of the region where δρ = 0 we
impose that δE = 0. This leads to a small Poisson prob-
lem (with zero flux boundary conditions) within the interpola-
tion volume which can be solved using the FFTW library [9].
Lennard-Jones and erfc interactions were truncated at a dis-
tance of 9Å. We use Monte Carlo updates in both the position
and orientation of the molecules, tuned to give an acceptance
rate of about 40%. For each update of a molecule we perform
100 plaquette updates. Simulations were performed at 300K
at constant volume. Due to the simplicity of the plaquette up-
dates compared with the the calculation of the erfc interaction,
they take a small part of the CPU time.

We compared our Monte Carlo simulation of TIP3P with a
molecular dynamics simulation [10] using using a Langevin
thermostat, friction 1 ps−1, integration time step 1 fs. We
used a cubic box of side 18.62 Å and a grid of 203 sites for
the Monte Carlo. We measured the autocorrelation time of
the potential energy, V using blocking [11], after removing
the energy in the transverse electric field in the Monte Carlo
runs. A set of recordings corresponding to T sweeps or time
steps is averaged in blocks of b = 2m recordings, to estimate
the mean potential energy, 〈V 〉, and a running estimate in the
error in 〈V 〉, σ̃(b). For large blocking factors σ̃(b) saturates to
a constant σ̃v ; the integrated autocorrelation time is given by
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τ = σ̃2
vT/2〈V 2 −〈V 〉2〉. In order to obtain good statistics for

the dynamics we simulated a small system of 216 particles for
several thousand τ ; use of large systems would require simu-
lations which are too slow to give useful statistical results on
dynamical quantities. The running estimate of τ(b) is plotted
in Figure 2. We estimate that τ = 1100 for molecular dynam-
ics and τ = 800 for Monte Carlo. We also performed Brown-
ian dynamics simulations with the time step equal to 1/10 of
the stability limit using an Euler integrator finding τ = 3200.
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FIG. 2: Blocking analysis of the energy with Monte Carlo (MC),
molecular dynamics (MD) and Brownian dynamics (BD) to estimate
the energy autocorrelation time. The estimated τ for each method is
indicated with a dot-dashed line.

To conclude, we have implemented a Monte Carlo algo-
rithm for the simulation of TIP3P. Each Monte Carlo time
step implies two interpolations per charge plus calculation of
a localized current. Each molecular dynamics step requires
one charge interpolation and then three extrapolations for the
force plus solution of the Poisson equation. The total com-
plexity of the interpolation steps is very similar in molecu-
lar dynamics (particularly multigrid) codes and in our Monte
Carlo formulation. The integrated autocorrelation time with
our algorithm is comparable to simulations performed using
molecular dynamics when measured in sweeps. CPU time
comparisons were less favorable to our code in part since
the (Fourier based) Gromacs package contains contains ex-
tensively optimized routines for interpolation which we did
not implement. Multigrid and the present Monte Carlo algo-
rithm are also obliged to use a larger interpolation footprint
than pure Fourier based algorithms. Improved algorithms for
Gaussian interpolation will reduce the speed difference.

In this article we introduced estimates of the error in the
real-space potential generated by our algorithm. These esti-
mates differ from those widely used in the analysis of molec-
ular dynamics codes, which concentrate on force errors. Force
estimates are, however, not natural for the analysis of Monte-
Carlo algorithms. If we were to implement the above dis-

cretizations in a molecular dynamics code using the ideas in
[12] force errors would then be very similar to those presented
in the analysis of multigrid algorithms in [3]. This paper also
gives a detailed comparison of the relative errors in real space
solvers such as multigrid and more conventional Fourier based
solvers.

The authors in [3] also reduced the range of the interpola-
tion step by introducing a second on-lattice convolution after
interpolating charges to the grid. Similar techniques are pos-
sible here if we modify the kernel K so as to include a extra
spreading step; charge interpolation then becomes cheaper. In
our algorithm this simplification in charge motion is balanced
by an increase in the complexity of plaquette updates.

Our algorithm has the important advantage over other codes
of being purely local, and thus easily implemented on parallel
computers with limited interprocessor communication, such
as is the case on low cost clusters. With a Monte Carlo algo-
rithm there is also an enormous gain in flexibility in heteroge-
nous environments: In simulations of a biomolecule or an in-
terface most of the water molecules play the role of distant
spectator, even if they provide the majority of charge centers.
In Monte Carlo it is trivial to bias moves towards interesting
degrees of freedom, or even introduce cluster [13] or multi-
step [14] updates; with molecular dynamics multi-scale and
multi-step algorithms are difficult to implement and prone to
instability.
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