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We study the properties of convex functionals which have been proposed for the simulation of charged molec-
ular systems within the Poisson-Boltzmann approximation. We consider the extent to which the functionals
reproduce the true fluctuations of electrolytes and thus the one-loop correction to mean field theory – includ-
ing the Deby-Hückel correction to the free energy of ionic solutions. We also compare the functionals for use
in numerical optimization of a mean field model of a charged polymer and show that different functionals
have very different stiffnesses leading to substantial differences in accuracy and speed.

INTRODUCTION

The sign of electrostatic free energy functionals has
long interested and puzzled the community of molecu-
lar simulators: A recent paper states The fact that the
functional cannot be identified with the electrostatic en-
ergy away from the minimum a priori precludes its use
in a dynamical “on the fly” optimization. . . 1. Similar
statements as to the nature of the free energy in Poisson-
Boltzmann functionals can be found in other papers2,3.

Implicitly most formulations of electrostatic free ener-
gies work4 with the electric field and the potential and
are associated with the natural potential energy

UE = −
∫
εE2

2
dr (1)

This energy seems to be concave and unbounded below,
whereas when thermodynamic potentials are written in
terms of the electric displacement field D we find

UD = +

∫
D2

2ε
dr (2)

which is convex. As emphasised in a classic text5 the
two formulations are identical in content, and simply
linked by a Legendre transform. The importance of the
correct ensemble in the understanding of electrodynam-
ics and stability of media was particularly emphasised
in reviews of Kirzhnits and collaborators6,7. Inspired
in particular by this view we proposed a free energy
functional for the Poisson-Boltzmann equation which is
a true minimizer8,9, rather than a stationary principle.
Our hope is that when implemented in practical codes10
these locally formulated convex forms give more stable
and simpler algorithms. Using a convex free energy it
is possible to implement an implicit solvent code which
fully includes the Poisson-Boltzmann free energy in which
“on the fly” optimization can then be performed using the
Car-Parrinello method11. In this case the electrodynamic
field can evolve in parallel to degrees of freedom in the
molecule12.

Our work takes the displacement field D as the funda-
mental thermodynamic field, rather than φ or E. Other
recent work13–15 takes a different approach to the prob-

lem. By a series of transformations to the original varia-
tional formulations of the Poisson-Boltzmann functional
(expressed as a function of the electrostatics potential, φ)
the authors have found new families of functionals which
are scalar, convex and local.

While all these functionals are strictly equivalent at
their stationary point when simulating at finite temper-
atures differences can occur: The Car-Parrinello method
thermostats the supplementary variables to zero tem-
perature; in this way we only see the true minimum of
the energy functional. However in many applications we
might wish to run simulations with all variables ther-
mostated to the same, ambient temperature. For electro-
static functionals in dielectric media this samples fluc-
tuations which are equivalent to the so-called thermal
Casimir interaction16–18, which is just the zero frequency
contribution to the free energy in Lifshitz theory. There
thus arises the question – what happens to the free ener-
gies when a convex Poisson-Boltzmann functional is used
in a finite temperature simulation? One might hope that
the functionals also reproduce the correct one-loop cor-
rections to the free energy, which in the case of an elec-
trolyte has an anomalous scaling in ρ3/2 where ρ is the
salt concentration.

To answer this question we will study the spectra of
several free energy functionals expanded to quadratic or-
der. The spectra are also crucial in understanding the
convergence properties and dynamics of simulation algo-
rithms. Accurate (non-implicit) integration in molecular
dynamics requires a time step which is short compared
with all dynamic processes under consideration. Algo-
rithms which generate time scales which are very dif-
ferent for different modes are said to be stiff and lead
to reduced efficiency. Stiffness can also have other, un-
wanted consequences in optimization algorithms – such
as poor convergence properties. We explore this ques-
tion in the last part of the paper where we study a model
of free energy minimization in the context of a confined
polyelectrolyte.

We start by a reminder of Poisson-Boltzmann theory
and the corrections to it coming from Gaussian fluctua-
tions at the one-loop level. We then show that the same
one-loop free energy is found in a complementary dual
(and convex) formulation of the free energy which can
be used within a full molecular dynamics or Monte Carlo
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simulation. We then move on to considerations of coarse
grained models and test various discretizations of electro-
statics energies for their accuracy and ease of use within
minimizing principles.

POISSON-BOLTZMANN THEORY AND ITS ONE-LOOP
CORRECTION

In our presentation we will consider the case of a sym-
metric electrolyte, however the identities that we derive
are independent of the exact microscopic model used.
The use of a definite physical example leads to consider-
able simplification of notation.

The mean-field Poisson-Boltzmann functional for a
symmetric electrolyte is

Fφ =

∫ (
−ε(∇φ)2

2
− 2kBTλ coshβeφ+ ρeφ

)
dr (3)

where kBT = β−1 is the thermal energy, e the ion charge
φ the electrostatic potential and λ a fugacity. At the
stationary point of this “free energy” we find

div εgrad φ− 2λe sinh(βeφ) + ρe = 0 (4)

which is indeed the classic equation for the potential in
the Poisson-Boltzmann formalism. Linearizing this equa-
tion allows us to define the inverse Debye length from
κ2 = 2λβe2/ε. At low concentrations λ can be identified
with the salt concentration. Since this thermodynamic
potential is naturally expressed in terms of the thermo-
dynamics fields φ or E it is concave as noted for eq. (1).
Any attempt to use such a form in Car-Parrinello simu-
lation will lead to numerical instabilities.

Much recent work has used field theory techniques to
extend this functional to include fluctuations. In particu-
lar one can sum the fluctuations to the one-loop level19,20,
which gives as a correction to this free energy the func-
tional determinant

Floop =
kBT

2
log
∣∣− div ε(r)grad + 2λβe2 cosh (βeφ)

∣∣
(5)

This expression is often interpreted with a substraction
scheme – one compares with the free energy of an empty
box, where λ = 0. Even with this subtraction the ex-
pression is formally divergent. However on introducing a
microscopic cut-off21 the loop free-energy gives both the
Born self-energy of solvation

EBorn =
e2

8πεa
(6)

as well as the anomalous Debye-Hückel free energy

FDH
V

= −kBTκ
3

12π
(7)

as is shown in Appendix II.

PROPERTIES OF THE LEGENDRE TRANSFORM

As noted above many of the standard concave expres-
sion for electrostatic free energies can be rendered convex
by Legendre transform8. Several conventions exist in the
literature22. In particular we define the transform of a
convex function c(x) as

g(s) = sup
x

(sx− c(x)) (8)

We will also use the notation g(s) = L[c](s). The trans-
formation is an involution, that is the double transform
of a convex function is the identity.

For this paper we will be interested in the second order
expansion of free energies about an equilibrium point.
For this we will use an important identity linking the
second derivatives of the functions g and c.

d2c

dx2

d2g

ds2
= 1 (9)

valid at the corresponding pair of variables (x, s). We also
note that the Legendre transform of a scaled function:
αc(γx) is given by αg(s/(αγ)).

DUAL FORMULATIONS OF THE POISSON-BOLTZMANN
EQUATION

In previous work8,9 we have detailed how to pass from
the Poisson-Boltzmann free energy expressed in terms
of the electrostatic potential, φ to a dual formulation
expressed in terms of the electric displacement D. In
particular we found

Fdual = Ffield + Fions (10)

where

Ffield = L[εE2/2] =
D2

2ε
(11)

with E = −grad φ. and

Fions = L[2λkBT cosh(eβφ)](div D− ρe) (12)

The transform of the hyperbolic cosine is easily found

g(s) = L[2 cosh](s) = s sinh−1(s/2)−
√

4 + s2 (13)

thus

Fdual =

∫ (
D2

2ε
+ kBTλg ((div D− ρe) /eλ)

)
dr (14)

This form as a sum of two Legendre transforms will turn
out to be very important for a number of determinant
identities that we derive below. We will need also the
expansion of g(s) = −2 + s2/4− s4/192 + . . . .
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This transformation gives a convex free energy which
can be used in a Monte Carlo or molecular dynamics sim-
ulation. It has been constructed so that the minimum of
eq. (14) is identical to the maximum of eq. (3). The po-
tential and dual formulations are linked via the equation:

div D− ρe = −2λe sinh (βeφ) (15)

which can be understood as showing that the ionic
charge concentration in the Poisson-Boltzmann equation
is −2λe sinhβeφ.

Parameterization and Scalarizing

It is clear that the use of a vector functional rather
than the usual scalar form has increased the number of
variables that need to be simulated or optimized14,15. We
show here that given a functional eq. (14) of a vector field
we can find a related functional of a scalar field.

When we consider the stationary point of the energy
eq. (14) we find that

D

ε
− kBT

e
grad g′ = 0 (16)

We then identify the function kBTg′/e = −φ at the sta-
tionary point. We see that we can make such a substitu-
tion even away from the minimum to find a more restric-
tive functional which is to be optimized over a smaller
subspace:

Fdual,φ =

∫ (
ε
(∇φ)2

2
+kBTλg((div εgrad φ+ρe)/eλ)

)
dr

(17)
Since the space is more restrictive the minimum of this
functional is clearly greater than or equal to the func-
tional expressed in terms ofD, however the absolute min-
imum is compatible with the parametrization, implying
that this functional has the correct minimum free energy.
Indeed we can go further and take linear combinations

Fcomb = (m+ 1)Fdual,φ +mFφ (18)

for m ≥ 0 which all have the same, correct minimum.

Determinant identities

In this section we present some matrix identities which
link the functional determinants of operators with their
dual equivalent. These identities are particularly inter-
esting because they link operators (at least when discre-
tised) of dimensions N ×N which are expressed in terms
of the potential, to operators of dimensions 3N × 3N for
the electric displacement.

The identities are easiest to derive from a discretized
form of the free energy. We will work with the discrete

divergence operator ∂rl which acts on the link variable
Dl. When discretizing to a simple cubic lattice there are
3N variables Dl and N values of the divergence which we
associate with the lattice points. We discretize the non-
linear contribution to the free energy eq. (14) as follows:

Fions =
∑
r

g (
∑
l∂rlDl − ρe) (19)

Take a second derivative with respect to the link variables
Dp and Dq to find the matrix

∆pq =
∑
r

∂rp∂rqg
′′ (
∑
l ∂rlDl − ρe) (20)

where g′′ is the second derivative of g, evaluated at r.
Create a matrix with g′′ on the diagonal then eq. (20) is
a conventional matrix product:

∆pq =
∑
rr′

∂Tpr(g
′′
r δrr′)∂r′q (21)

We identify (−∂Tpr) with the gradient operator since div
and (−grad ) are mutually adjoint.

We similarly discretize the gradient contribution to the
free energy eq. (3)

1

2

∑
rr′,l

εl(∂
T
lrφr)(∂

T
lr′φ
′
r) (22)

and take the second derivative with respect to φr to find
the matrix

∆̃rr′ =
∑
l

εl∂
T
lr∂

T
lr′ (23)

When we turn εl into a diagonal matrix we find the ma-
trix product:

∆̃rr′ =
∑
ll′

∂r′l(εlδll′)∂
T
l′r (24)

which is the discrete version of the operator
(−div εgrad ).

We now consider the relation between the one-loop free
energy, eq. (5), and its naive equivalent within the dual
formulation found by taking the second functional deriva-
tive of eq. (14) which we write as the discretized form:

Fdual,loop =
kBT

2

∣∣∣δll′
εl

+ ∂T g′′∂
∣∣∣ (25)

We will show that modulo some trivial local contributions
to the free energy the expression eq. (25) contains the
same physics as eq. (5) which we write as

Floop =
kBT

2

∣∣∣∂ε∂T + c′′
∣∣∣ (26)
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where c′′ is the second derivative of the entropic contri-
bution to the free energy. In the case of the symmetric
electrolyte c = 2kBTλ cosh(eβφ)

To link these two determinants we will make use of
the singular value decomposition theorem which states
that a rectangular matrix , A of dimensions m×n can be
expressed as a product

A = UΣV ∗ (27)

where U is an unitary matrix of dimensions m×m such
that UU∗ = U∗U = 1; V is also unitary of dimensions
n × n and Σ is diagonal rectangular with non-negative
elements on the diagonal.

We consider the determinant for a rectangular matrix
A: ∣∣AAT + 1

∣∣ (28)

With the help of the singular value decomposition we can
write ∣∣1 +AAT

∣∣ =
∣∣1 + UΣΣTU∗

∣∣ =
∣∣1 + ΣΣT

∣∣ (29)

=
∣∣1 + ΣTΣ

∣∣ =
∣∣1 +ATA

∣∣ (30)

The identity is between two matrices of different dimen-
sions: m×m and n× n. We apply this theorem to

A =
1√
c′′
∂
√
ε (31)

and find∣∣∣ 1√
c′′
∂ ε∂T

1√
c′′

+ 1
∣∣∣ =

∣∣∣√ε∂T 1

c′′
∂
√
ε+ 1

∣∣∣ (32)

We can pull the diagonal matrices c′′ and ε out of the
main determinants to find∣∣∣∂ε∂T + c′′

∣∣∣ =
∣∣c′′∣∣∣∣ε∣∣∣∣∣∂T 1

c′′
∂ +

1

ε

∣∣∣ (33)

We now make use of the relation between the curvatures
of a function and its Legendre transform eq. (9): g′′ =
1/c′′, so that∣∣∣∂ε∂T + c′′

∣∣∣ =
∣∣c′′∣∣∣∣ε∣∣∣∣∣∂T g′′∂ +

1

ε

∣∣∣ (34)

which is our required identity. The result is rather re-
markable. The dual energy eq. (14) was derived purely
by considering stationnary properties of the free energy.
However, if we use this in a simulation at finite temper-
ature we generate automatically the correct one loop free
energy, modulo a trivial shift in the zero. Of course we
do not have any guarantee that any higher order con-
tributions are correct – in particular in the strong cou-
pling limit23–25 the addition of terms valid in a weak
coupling expansion may not help in correctly describing
the physics. We can also write the dual contribution to
the free energy as

Fdual,loop =
kBT

2
log
∣∣∣− grad g′′div +

1

ε

∣∣∣ (35)

For the specific case of a symmetric electrolyte d2g/ds2 =

1/
√

4 + s2.
As noted in a recent paper the one-loop corrected

Poisson-Boltzmann equation contains many interesting
physical effects including image charges in the case of
dielectric continuities21,26. Thus having a form of the
Poisson-Boltzmann that can be simulated and that in-
cludes such terms could be particularly interesting in ap-
plications near surfaces.

GENERAL SCALAR FUNCTIONALS

Entirely different approaches to convexification have
also been proposed in a recent series of papers13–15. In
particular it was shown that it was possible to develop
a local, convex functional which is expressed in terms of
the scalar potential, rather than the vector field D. The
authors give several expressions but in particular find a
local minimizing principle with the functional

Fsc =

∫ [ε(∇φ)2

2
− 2kBTλ cosh (βeφ)

+2λeφ sinh(βeφ) (36)

+
kBT

e
sinh−1 ((div εgrad φ+ ρe)/2eλ)×

(div εgrad φ+ ρe − 2eλ sinh(βeφ))
]

dr (37)

When expanded to second order in φ this gives:

Fsc = const +

∫ [3ε(∇φ)2

2
+ λβe2φ2

+
(div εgrad φ+ ρe)

2

2e2βλ
− ρeφ

]
dr (38)

At least to second order this looks like a linear combi-
nation of eq. (17) and eq. (3). Far from any sources in
a background and with uniform dielectric properties we
can re-write eq. (38) in Fourier space:

F =
∑
q

(3εq2

2
+ λβe2 +

ε2q4

2λe2β

)
|φq|2 (39)

The question that arises at this moment is whether
such an expression also gives rise to the correct one-loop
potential. From the dispersion relation we deduce that
the fluctuation potential can be written in the form

Ffluc =
kBT

2

∑
q

log
(
1 + 3(q/κ)2 + (q/κ)4

)
(40)

which corresponds to eq. (54) in Debye-Hückel theory. As
can be expected this gives rise to a divergent integral in
three dimensions. However it is not clear how to separate
this expression into a Born energy with a Debye-Hückel
fluctuation potential of the form given in Appendix II,
eq. (58). We must regularize by subtracting off log(q4)
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but this still leaves a Born-like energy which has a radius
which is itself a function of the Debye length. Our con-
clusion is that the scalar functionals are indeed correct
for the ground state, but do not correspond to the correct
excitation spectrum of the true physical system. These
functionals can be used in a Car-Parrinello scheme where
they are thermostated to zero temperature to avoid fluc-
tuations.

SPECTRUM AND STIFFNESS

In a uniform dielectric background far from charges the
determinant eq. (5) can be diagonalised using a Fourier
decomposition. The eigenvalues of the operator in eq. (5)
are then

ωq = ε(q2 + κ2) (41)

We now consider the spectrum in the dual picture by
expanding the free energy eq. (14) to quadratic order, to
find the vector equivalent of the Debye-Hückel theory.

Fvec = const +

∫ [
D2

2ε
+ kBT

(div D− ρe)2

4λe2

]
dr (42)

The spectrum for quadratic fluctuations decomposes into
a longitudinal and transverse part.

ωl =

(
1

ε
+
kBTq

2

2λe2

)
= ω0(q2 + κ2) (43)

ωt =
1

ε

We note that the functional forms of eq. (41) and eq. (43)
are the same which explains, at least partly, the identity
between the free energies at the one-loop level.

Consider now discretizing to a grid of step h, finer than
the Debye length. There is a gap in the spectrum eq. (43)
and the ratio of the stiffest to the softest modes scales as

S ∼ (1/κh)2 (44)

It is clear that this ratio can become large when using
a very fine grid, in which case the system of equations
describing the electrolyte can become stiff. When inte-
grating a system with a second order algorithm in time
(such as molecular dynamics) the number of time steps
required to sample all modes in the system scales as

√
S.

In a Monte Carlo simulation we can expect that the equi-
libration of the electrolyte takes O(S) sweeps. Stiffness
slows the convergence of both molecular dynamics and
Monte Carlo algorithms.

If we make a similar calculation for energy functionals
such as eq. (39) we find that the equations are stiffer:
The spectrum can be written in the form

ω = ω0

(
1 + 3(q/κ)2 + (q/κ)4

)
(45)

which implies that on a fine grid S ∼ (1/κh)4 For eq. (17)
the stiffness is given by S ∼ L2/κ2h4 where L is the sys-
tem size, The presence of higher derivatives in a func-
tional can imply a slower algorithm, even though fewer
degrees of freedom must be integrated.

We now move on to the second major topic of this pa-
per which is the performance of optimization algorithms
that look for minima in a free energy.

SEARCHING FOR SADDLE POINTS

We start by noting that the minimization of a con-
vex function is generally easy. Many algorithms can be
proved to converge quickly to the correct point. As an
example for general quadratic minima the conjugate gra-
dient method for N variables converges in N iterations.
If the object being minimized is a local free energy each
evaluation of the energy is itself of complexity O(N).
Thus we expect that the solution time for a model dis-
cretized to N lattice points should scale as O(N2). We
note that this may not be the optimal method of so-
lution – sophisticated solvers of the Poisson-Boltzmann
equation such as Aquasol are rather based on multigrid
methods27,28.

When searching for saddle points no such simple results
can be found. Consider for instance a simple alternating
scheme applied to two variables x and y with the energy

f = −x2/2 + y2/2 + αxy

For all α the saddle point remains at the origin.
A simple algorithm is to alternate the two variables

and optimized at each step giving the maps:

x→ αy y → y (46)
y → −αx x→ x (47)

A cycle of updates gives the product(
x′

y′

)
=

(
0 α
0 −α2

)(
x
y

)
This matrix has eigenvalues 0, α2. We converge to the
origin only when α2 < 1. We learn that mixed optimiza-
tion over coupled convex-concave spaces can fail when
the coupling between variables becomes too strong in a
way which is impossible for simple convex optimization.

Such mixed saddle point optimization problems occur
very often in electrostatic problems which are formulated
in terms of the electrostatic potential coupled to some
other, physical degree of freedom. In the field of molec-
ular simulation we could consider the configuration of
a macromolecule described by atomistic potentials. As
a more definite example we will consider a model of a
charged polyelectrolyte, in which a long polymer is de-
scribed using an auxiliary field Ψ, where Ψ2 describes
the local monomer concentration29,30. We now consider
a number of optimization techniques applied to such a
system. The techniques that we try are
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• Direct nested optimization between the polymer
and electrostatic potential

• Building a positive functional from squared deriva-
tives

• Legendre transform of the electrostatic free energy

• Use of generalized scalar functionals for the elec-
trostatics

We evaluate the methods as a function of the discretiza-
tion looking for methods that are rapid and converge eas-
ily without extra derivative information being given by
the user.

A model for mixed optimization in electrostatics

We work with a model developed to study spontaneous
assembly of single-stranded RNA viruses31,32. The ge-
netic material of the virus is modeled by a single poly-
electrolyte chain, which must insert itself into a charged
capsid. The system is supplemented by a symmetric elec-
trolytic solution. The free energy density describing the
interaction between the polymer, capsid and the elec-
trolyte is

F (φ,Ψ) =

∫ [
− ε

2
(∇φ)2 + φ

(
σ − peΨ2

)
− 2λ kBT cosh (βeφ)

+ kBT

{
a2

6
(∇Ψ)2 +

v

2
Ψ4

}]
dr . (48)

The third line of this expression corresponds to the non-
electrostatic interactions of the polyelectrolyte. σ is the
fixed charge of the capsid, p the charge on a monomer
of the polyelectrolyte, a the monomer size and v the ex-
cluded volume of the polyelectrolyte chain. This free en-
ergy is concave with respect to φ and convex with re-
spect to Ψ. These two fields interact through the cou-
pling peΨ2φ. In our studies we only consider systems
with spherical symmetry, discretizing to N points, see
Appendix I.

Nested Optimization

The stationary point of the functional F in equa-
tion (48) corresponds to the maximum over φ and the
minimum over Ψ. The most direct way to find such a
point is to search independently for the two extrema:
one optimizes iteratively the configuration while solving
the electrostatic problem at each calculation of the itera-
tive method. The outside loop of optimization calls upon
the interior one until the saddle point is reached (see the
algorithm (1) below). We call this method nested opti-
mization. It is the kind of algorithm which is easy to
implement if one has a pre-existing Poisson-Boltzmann

solver which one wishes to use to study the relaxation of
a bio-molecular system without reformulating the energy
functionals.

ALGORITHM 1. Nested Optimization Program

input
φ← φ0

Ψ← Ψ0

over Ψ
over φ for Ψfixed ← Ψ

minimize −F (φ,Ψfixed) over φ
return φopt, F (φopt,Ψfixed)
φ← φopt

φfixed ← φ
minimize F (φfixed,Ψ) over Ψ
return Ψopt, f(φopt,Ψopt)
Ψ← Ψopt

output ΨOPT , φOPT , F (φOPT ,ΨOPT )

It is to be noted that this method differs from an it-
erative scheme where both search loops are on the same
level but included in a general loop. The schematic view
of these two programs given in Fig. (1) shows these differ-
ences. The classical iterative method was implemented
and tested but no convergence could be reached. We thus
focus on the nested optimization method.

  

  optimise F over Y

optimise -F over f

optimise -F over f

optimise F over Y

F
OPT   

 Y
OPT 

   f
OPT    F

OPT   
 Y

OPT 
   f

OPT    

Figure 1. Schematic view of two iterative algorithms. On
the left-hand side, the nested optimization method studied in
this paper optimizes the pseudo free-energy over one field for
each optimization step taken for the other field. On the right
hand side, the other iterative method puts both optimization
loops on the same level in a third encompassing loop.

Squared gradient

An alternative to the nested optimizations discused
above is the use of a new functional based on the gra-
dient of the free energy33. At the saddle point(

δF

δφ

)
φSP ,ΨSP

=

(
δF

δΨ

)
φSP ,ΨSP

= 0 (49)
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We can build a new functional which is always positive
and vanishes at the stationary point:

Fderiv(φ,Ψ) =

∫ [(
δF

δΨ

)2

+

(
δF

δφ

)2
]

dr (50)

The minimum of this functional yields the fields at equi-
librium. The advantage of this formulation is that all
fields can be treated equally by the minimization process
which can be managed as a single global optimization.

Generalized scalar functionals

The next algorithm that we test is that based on
eq. (37). We denote ξ(φ,Ψ) = ε∇2φ+σ−peΨ2

eλ , and work
with the free energy

FI(φ,Ψ) =

∫ [
kBT

{
a2

6
(∇Ψ)2 +

v

2
Ψ4

}
+
ε

2
(∇φ)2

+2λkBT
{
− cosh (βeφ) + βeφ sinh(βeφ)

− sinh−1(ξ/2) sinh(βeφ) + (ξ/2) sinh−1 (ξ/2)
}]

dr

The global minimum is found with a single optimization
loop.

Legendre Transform

The Legendre transform of the electrostatic degrees of
freedom is still possible in the presence of the extra poly-
mer field. We find the locally defined free energy:

FL(D,Ψ) =

∫ [
kBT

{
a2

6
(∇Ψ)2 +

v

2
Ψ4

}
+
D2

2ε
+ kBTλg(ξ)

]
dr

with ξ = (σ − peΨ2 − div D)/eλ. The minimum over
both Ψ and D is found with a single optimization loop.

Numerical Results

The four functionals were programmed in Matlab. We
use the function fminunc to search for the minimum for
each case. This function uses a quasi-Newton algorithm34

and in particular the Broyden-Fletche-Goldfarb-Shanno
update. The idea is to use a good, black-box minimizer to
study how each formulation converges in time and accu-
racy as the number of discretization points increase. The
ideal is a formulation that converges to high accuracy
without the need for detailed tuning of the algorithm for
each application. We choose to stop iteration when the
functional is converged to within an estimated fraction
of 10−12.

Three quantities are considered to study the perfor-
mance of each method:

N
0 100 200 300 400

F

-2050

-2000

-1950

-1900

-1850

-1800

-1750

-1700

-1650

-1600

Figure 2. Convergence of free energy as a function of the
number of points in the discretization. Blue dots (•): Legen-
dre transform. Green triangles: (M) squared gradient. Black
squares: (�) nested loops. Red crosses (×): generalized scalar
functionals. Simple minimizer without external derivative in-
formation. Only the Legendre method reliably converges for
all N .

• Convergence of F when the number of points in-
crease.

• The derivative of the functional with respect to
each field. We use the L1-norm to test the validity
of the simulation

• Simulation time as a function of N .

Variables are initialized to Ψ = 1 for the polyelec-
trolyte field and φ = −1 for the potential. The system
size is 24 nm, where the charge of the capsid is σ = 0.4e
at R = 12 nm. The bulk concentration of monovalent
ions is λ = 10 mmol.L−1 and the water relative permit-
tivity is εR = 80. This corresponds to a Debye length of
3 nm. The parameters of the polyelectrolyte are set to
a = 0.5 nm, v = 0.05 nm3, and p = 1. The evolution of
the free energies as a function of N is depicted in Fig. (2);
Fig. (3) shows the derivatives on stopping.

We work with values of N up to 400 which gives values
of (1/κh), eq. (44), up to 50. The discretizations are
thus rather stiff. The most robust method appears to be
that based on the Legendre transform. Indeed, it is the
method that converges and gives the smallest error when
the number of points is large, Fig. (2), Fig. (3). We note
that the squared gradient method gives poor results with
even small N and the generalized scalar functional shows
poor convergence for large N .

The simulation time of each method is shown in
Fig. (4) as a function of discretization; we use a recent
intel-based desktop computer. As expected the mini-
mization time scales quadratically with the number of
variables in the discretization. We tried other, random,
initialisations and found that in all cases the method
based on the Legendre transform gives the most stable



8

N
0 100 200 300 400

L
1
   

10 -6

10 -4

10 -2

10 0

10 2

Figure 3. Color code as Fig. 2. Derivatives of the free energy
for the virus model for different discretizations and methods
on exit from the optimization loop.

results, together with a time of calculation which is as
good as the other tested algorithms.

N
10 1 10 2

t   

10 0

10 1

10 2

10 3

10 4

10 5

Figure 4. Color code as Fig. 2. Total simulation time as
a function of the number of points in the discretization of
the free energy. All algorithms display a quadratic growth
in time with N . The algorithm based on the double loop is
much slower than the three other methods. Dash line slope
2.

Stiffness and algorithms

From our numerical experiments we see that naive op-
timization of an expression with a saddle point leads to
slow convergence. It is more surprising that some algo-
rithms that can use convex optimization also give poor
numerical results. One possible explanation for the differ-
ences observed between the three convex methods is that
the algorithms have very different stiffnesses when the
number of discretization points increases. As noted above
an algorithm based on the Legendre transform has a stiff-
ness which increases as N2, whereas both the squared
gradient and generalized scalar functionals become much

stiffer with scaling in N4. This renders numerical codes
much more susceptible to numerical round-off errors and
also requires more careful stopping criteria. However as
stated above our philosophy is that we are looking for
free energies that are stable and easy to use without large
amounts of algorithmic tuning from the user.

N
0 100 200 300 400

L
1
   

10 -6

10 -4

10 -2

10 0

Figure 5. Derivatives of the free energy for the virus model
for different discretizations and algorithms on exit from the
optimization loop. Blue dots (•): Legendre transform, quasi-
Newton. Cyan circles (◦): Legendre transform, trust-region.
Red cross ×: scalar functional, quasi-Newton. Magenta stars
(?): scalar functional, trust-region.

More sophisticated black-box algorithms are also avail-
able. In particular if we are willing to calculate and
program a routine which calculates the first derivative
of the free energy with respect to each variable35 we
can find better results. In particular we use another
algorithm implemented in Matlab the trust-region algo-
rithm36. It avoids over-large steps thanks to the limit
imposed by the definition of a trust-region, yet it main-
tains strong convergence properties. The L1-norm of the
derivatives Fig. (5) and time used Fig. (6) are compared
with the results obtained with the quasi-Newton algo-
rithm. The change of algorithm allows one either to
significantly reduce the computational time (Legendre
transform method, blue and cyan points), or to better
converge (generalized scalar functionals, red and magenta
points. With the trust-region algorithm the lack of con-
vergence of the free energy disappears). Thus, using the
more sophisticated algorithm with derivative information
renders the optimization more reliable or more efficient.

CONCLUSION

We have studied the quadratic fluctuations around
equilibrium for several expressions for the free energy of
charged media. These fluctuations are closely related to
dispersion energies and the Debye-Hückel contribution to
the free energy of electrolytes. The functional based on
the field D correctly reproduces this free energy, even
though the functional was originally proposed as a mini-
mum principle.

When used in molecular dynamics codes it is important
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Figure 6. Color code as for Fig. 5. Computational time for
different methods.

to chose functionals which are not too stiff. We empha-
sised that the ratio of the largest to smallest eigenvalue
in the quadratic form is closely related to the number
of time steps which are required to sample all modes.
Again the functional based on the vector field D seems
to display good scaling.

We used a model of a virus to implement and com-
pare the optimization of four free energy functionals.
The Legendre-transformed functional shows faster con-
vergence and a greater accuracy in our tests. We suspect
that this is linked to the lower stiffness of the Legendre
formulation of the free energy.
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APPENDIX: SPHERICAL SYMMETRY AND
DISCRETISATION

Our study of determinant identities brought out the
importance of discretizations that conserve the adjoint
relation between the divergence and gradient operators.
Such identities are also important for our study of the
minimization of the polyelectrolyte free energy. Non-
compatible discretizations give rise to numerical errors
which are different between the different formulations.
We now show how to discretize within a spherical ge-
ometry in such a way as to include important dualities
between the discretized equations. The potentials φ and
Ψ are defined on the points of the discretisation, while
∇φ, ∇Ψ and D are defined on intermediate links. We

wish to conserve the fundamental identity∫
D · ∇φ = −

∫
φdiv D +

∮
φD · dS (51)

The discretized left hand side of this equation gives:

4π
∑
n

r2
n,n+1

(
φn+1 − φn

δ

)
Dn,n+1 (52)

where we have used the simplest differencing scheme for
the gradient operator and we define rn,n+1 as the posi-
tion of the centre of the link. Identifying both sides of
the identity, a definition of the discretized divergence is
obtained:

div n D =
Dn,n+1 r

2
n,n+1 −Dn−1,n r

2
n−1,n

δ r2
n

(53)

The Laplacian operator is then defined as usual by ∇2 =
−div n grad .

APPENDIX: ONE-LOOP FREE ENERGIES

We give here the treatment of the one-loop correction
in a homogeneous electrolyte. The free energy (com-
pared with the free energy of an empty box) coming from
quadratic fluctuations is

Ff =
kBT

2

∑
q

log(1 +
κ2

q2
) (54)

=
kBT

(2π)2

∫ q0

0

q2 dq log(1 + κ2/q2) (55)

=
kBT

(2π)2

(
κ2q0 −

πκ3

3

)
+O(1/q0) (56)

Where we introduce an upper cut-off q0. The divergence
in q1

0 can be balanced by a purely local self energy of the
form 1/(2q2) corresponding to the Born energy 1/8πεa
per atom, with a a real-space cut-off. The long-ranged
Debye-Hückel energy to the electrolyte is then

FDH
V

= −kBTκ
3

12π
(57)

which comes from

FDH =
kBT

2

∑
q

(
log(1 + κ2/q2)− λβe2/(εq2)

)
(58)
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