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Long-ranged electrostatics from local algorithms
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We show how to generate the long-ranged Coulomb interaction between pairs of particles with the help

of an auxiliary field evolving with local dynamics. This allows one to simulate systems containing

electric charges without ever calculating the Coulomb potential or solving Poisson’s equation. The

methods require the imposition of Gauss’s law as a dynamical constraint on the auxiliary field. The

local approach is particularly suited to treat implicit solvent models of dielectric media as well as

Poisson–Boltzmann models of solutions. Generalizations to nonperiodic boundary conditions as well

as practical aspects of the implementation are also reviewed.
1 Electrostatics from constrained energy functionals

Electrostatic interactions play a major role in controlling struc-

ture and properties of colloids, polyelectrolytes, membranes and

many other soft materials. In computer simulations, the elec-

trostatic potential energy is usually calculated via Coulomb’s

law, which is computed either through re-summation techniques1

or equivalently by solving the Poisson equation.2 Coulomb’s law

is often presented as a static limit of electrodynamics: charges

moving with speed v create electromagnetic radiation; the

charges are then stopped, allowing radiation to escape to infinity

and then finally one measures the interaction energy

Uij ¼ qiqj /4prij of the stationary charges.† Although the
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instantaneous Coulomb interaction is of course an excellent

approximation in the context of condensed matter systems,

a more general treatment, including retardation in the non-static

case, generates corrections of order (v/c)2, where c is the speed of

light.3 In fact these so-called Darwin interactions contain a subtle

conceptual error: they assume motion in a radiationless back-

ground. When one looks at the interaction in a thermalized

background the Darwin corrections to the interaction disappear

in thermodynamic averages.4 The thermodynamic interaction

generated by the full coupled particle-electromagnetic system is

just given by instantaneous Coulomb interactions, without

dynamic corrections. This result can be traced back to very early

work by Bohr and van Leeuwen, who showed that magnetic

interactions between bodies are rigorously zero in classical

(non-quantum) mechanics.5

This physical fact has been turned around in recent years in

order to develop a series of local electrostatic algorithms based

on dynamic electric fields. These algorithms have the advantage

of never having to compute long-ranged Coulomb interactions

explicitly. They work by recognizing that electrostatics is

generated automatically if one imposes a local conservation law

or constraints on a vector field discretized on a lattice. One must

thus very explicitly construct a dynamical system that is not fully

ergodic, so that certain configurations are never visited during

the simulation. In philosophy this is very close to lattice Boltz-

mann algorithms for generating hydrodynamics from discrete

lattice dynamics,6 which work by imposing local momentum

conservation in collisions. In local electrostatics one introduces

a discretized electric field E(r). In standard electrostatic solvers

one then requires that the electric field is derived from a potential

so that E ¼ – grad f. In the local algorithm this is no longer the

case, one only requires the local dynamical constraint of Gauss’

law, div E(r) ¼ r(r) is maintained at all times. As usual the

electrostatic energy is given by U½E� ¼ 1

2

ð
EðrÞ2d3r. If one now

considers the charge density rðrÞ ¼
P

i qidðr� riÞ generated by
This journal is ª The Royal Society of Chemistry 2011
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point charges qi at temperature T, it is easy to show7 that the

constrained partition function factorizes

ZðfrigÞ ¼
ð
DE

Y
r

dðdivEðrÞ � rðfrigÞÞe�U=kBT

¼ ZCoulombðfri Þ � Z trans; (1)g

We see that Gauss’s law is imposed on all configurations of the

field E. Here, Z trans contains an integration over all transverse

(non-potential) field degrees of freedom Etrans ¼ E + grad 4 and

ZCoulomb is the partition function of the same physical system,

with interactions mediated by instantaneous Coulomb interac-

tions. Thus, correct Coulombic Boltzmann weights are generated

if one allows these extra field degrees of freedom to fluctuate

subject to Gauss’s law; it is not necessary to remove them

entirely. One then samples the full partition function by inte-

grating finally over the position of the charges in eqn (1).

The interesting point of the formulation in terms of eqn (1) is

that the constrained partition function is very easy to sample

using just local updates to the particle positions and the electric

field E. This is very different to standard electrostatic solvers

where motion of a single particle modifies the electrostatic

potential, f globally. Thus eqn (1) forms the basis of a family of

linear scaling algorithms, which simultaneously sample particle

and electric field configurations either through Monte Carlo

(MC) or molecular dynamics (MD). The motion of particles

implies a current J, and the electric field must change (but only

locally) to preserve the Gauss constraint. In order to fully sample

the transverse degrees of freedom in the partition function one

can add a second set of MC moves which update the electric field

on the plaquettes of the discretizing lattice.8 Such MC sampling

results in diffusive dynamics of the electric field (see below) and is

frequently employed in other problems in condensed matter

physics involving constraints, e.g. quantum spin models.9,10 In

the MD case, it is natural and convenient to introduce the

magnetic field B and to evolve both E and B using full (propa-

gative) Maxwellian dynamics.11 Gauss’s law is preserved if

obeyed as an initial condition, and the transverse field degrees of

freedom are sampled at the same temperature as the particles.

Alternatively, the speed of light c may be used as a dynamical

optimization parameter. The electric field can then be annealed

to follow the solution of the Poisson equation adiabatially,

similar to the electron density following the positions of nuclei in

the Car–Parrinello method.12

We note that there is one very non-intuitive point in the use of

auxiliary field variables. In the final, implemented code one has

to simulate more degrees of freedom than in the original system.

Naively one would expect this to complicate and slow down

a simulation. In practice the locality of the resulting algorithm

simplifies the calculation of the energy, while the extra field

variables have autocorrelation times which are usually much

shorter than other hydrodynamic variables such as the density.

We discuss this point further in section 5.

The present review highlights several areas of interest for the

application of the local electrostatic approach. Section 2

discusses the treatment of dielectric properties in implicit solvent

simulations. Section 3 explains how thermal Keesom and Casi-

mir forces emerge naturally from the present formalism. Poisson

Boltzmann simulations are described in Section 5, and some
This journal is ª The Royal Society of Chemistry 2011
details of the implementations constructed so far are reviewed in

Section 6.
2 Inhomogeneous dielectric media and non-local
electrostatics

Polyelectrolytes and biopolymers in solution are often charac-

terized by strong dielectric contrast between themselves and the

solvent: a low dielectric hydrocarbon chain with dielectric

constant 3 z 2–5 is immersed in water with 3 z 80. In a simu-

lation where water is represented as an implicit solvent, this

contrast must be represented by a spatially varying dielectric

function 3(r), which also changes dynamically. The electrostatic

energy of charges in such an inhomogeneous dielectric medium

reads

U½D� ¼
ð

D2ðrÞ
23ðrÞ d3r (2)

where D(r) ¼ 3(r)E(r) is the electric displacement that obeys the

Gauss constraint, divD(r) ¼ r(r). Since the Fourier transform no

longer diagonalizes the corresponding Poisson equation

div(3(r)grad f)¼� r(r), many coarse-grained simulations ignore

this contrast and use a uniform dielectric background instead. By

contrast, the local electrostatic algorithm can easily treat any

dynamical dielectric function by replacing E with D and using the

electrostatic energy eqn (2) in eqn (1).13–15

An alternative, and more general approach to simulating

dielectric effects consists of introducing a macroscopic polari-

zation field16,17 P(r) so that D(r)¼ E(r) + P(r). This allows one to

couple a short-ranged Landau-Ginzburg approach to the local

ordering of the dielectric together with a coupling of the induced

charge ri ¼ � divP to the long-ranged electrostatic fields. The

total electrostatic energy thus reads

U½D;P� ¼ 1

2

ð
d3r ðDðrÞ � PðrÞÞ2

þ 1

2

ð
d3r

ð
d3r0 PðrÞKðr; r0ÞPðr0Þ: (3)

The first term in the energy is just the electric field energy E2/2

whereas the short ranged kernel K(r, r0) describes the local

interactions between polarization vectors in the medium. D must

still be considered as constrained by Gauss law. Similar func-

tionals have also been introduced in quantum chemistry.18 The

simplest possible form for K is a local form, K(r, r0)¼ k(r)Id(r, r0)

and eqn (3) is equivalent to eqn (2) with 3(r) ¼ 1 + k(r)�1. An

advantage of eqn (3), however, is, that it provides a convenient

starting point to treat nonlocal electrostatics,19,20 where one must

compute

D(r) ¼
Ð

d3r03(r,r0)E(r0). (4)

Obtaining a first principled expression for the non-local kernel

K(r, r0) is a difficult task, since it ultimately involves microscopic

physics. If one assumes isotropy, however, one can in the spirit of

Landau–Ginzburg theories with vector order parameters

perform an expansion in derivatives of P. Such derivative

couplings can have drastic effects on interactions at the nano-

metric scale. A classic, and very important, example is water: the
Soft Matter, 2011, 7, 3260–3267 | 3261
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Fourier transform of the function 3(r � r0), 3(q) displays

a number of exceptional properties, including changes of sign

and divergences as specific wave-vectors, before converging to

unity for large wave-vectors.21–23

The main qualitative features of the dielectric response of bulk

water can be reproduced with the present formalism.24 Since the

dielectric response involves the longitudinal degrees of freedom

of the polarization we can further expand K in powers of div P.

The simplest functional that describes the above phenomenology

of water is then

1

2

ð
dr

ð
dr0PðrÞKðjr� r0jÞPðr0Þ

z
1

2

ð
dr½kPðrÞ2 þ klðdivPÞ2 þ aðgrad divPÞ2 : (5)�

Similar couplings in curl P can also be expected for the

transverse field, but they do not modify the dielectric response in

simple geometries. In most materials one would expect that kl >

0 and one can truncate the expansion after the first derivative

contribution. The exceptional properties of water come from the

fact that kl < 0. This requires the use of the third, higher deriv-

ative, contribution to the free energy in order to maintain ther-

modynamic stability. Such negative derivative couplings in

Landau–Ginzburg expansions remind one of Lifshitz points in

the theory of phase transitions where a susceptibility diverges at

a finite wave-vector. Indeed in water it is known that such a giant

susceptibility exists for k� 0.7 nm�1. It is linked to fluctuations in

the hydrogen bonding network which leads to a true critical

point in the six vertex model.25 The energy functional eqn (5) has

been used to calculate the dielectric barrier for ion transport

through an idealized low-dielectric membrane channel.26 A

difficulty with this approach is, however, that it cannot be

expected to be accurate in the immediate vicinity of ions, where

the structure of the solvent is strongly modified by steric effects

and the presence of large electric fields.27

3 Fluctuations in dielectrics: thermal Keesom and
Casimir potentials

We now turn to the finite temperature properties of functionals

such as eqn (3). If we integrate over the field D in a partition

function24 we find that the local contribution to the free energy

eqn (5) is supplemented with the electrostatic energy

Uc ¼
1

2

ð
divPðrÞdivPðr0Þ

4pjr� r0j d3rd3r0

¼ 1

2

ð ����q̂,PðqÞ
����2d3q

¼ 1

2

ð
PðrÞTðr� r0ÞPðr0Þ d3rd3r0 (6)

where T is the dipolar operator

TijðrÞ ¼
dij � 3r̂i r̂j

4pr3
þ dij

3
dðrÞ: (7)

If we combine the delta-function of eqn (7) with the local

contribution in k of eqn (5) one immediately finds the well known

Clausius–Mossotti relation.
3262 | Soft Matter, 2011, 7, 3260–3267
1

ra
¼ 1

3
þ k ¼ 1

3
þ 1

c
(8)

relating the polarizability a to the susceptibility c and the density

of dipoles r.

It is known since the work of Keesom that a set of interacting,

classical dipoles fluctuating at thermal equilibrium give rise to an

effective potential of the form,13

VðrÞ ¼ �
hp2

i ihp2
j i

3kBTð4pr3Þ2
(9)

where hp2
ii is the fluctuation of the dipole i in free space. We see

that dielectric functionals based on the constrained electrostatic

formalism must contain such potentials and are identical in

content to standard models of fluctuating dipoles. In certain

physical situations (such as solutions of lipid membranes) these

interactions dominate the van der Waals interactions.15

If we integrate over the polarization field in a dielectric

medium, eqn (3) reduces to eqn (2) which can also be shown to

produce interactions decaying in 1/r6 in dielectric media.13 This

contradicts statements14,28 that such dipolar terms are spurious

artefacts of the constrained formalism. Such thermal interactions

are often given the generic name of Casimir interactions. In

general they give rise to non-pairwise potentials which are diffi-

cult to evaluate in general geometries. These interactions are

automatically summed to all orders in the constrained algorithm.

They can also be studied in detail using methods based on matrix

factorization.29 These thermal Casimir interactions should be

distinguished from those generated by quantum fluctuations, the

London dispersion interaction. In the context of simulations they

require a full path integral treatment.30

In a uniform, isotropic dielectric medium fluctuations of the P

field can be decomposed into longitudinal and transverse parts.

The decomposition can be done in Fourier space defining the

longitudinal component Pl ¼ q̂(q̂$P) and its complement the

transverse component Pt ¼ P – Pl. Equivalently, one can use

the dipolar operator T in a real-space projection: Pl ¼ TP. The

statistical mechanics of the transverse and longitudinal compo-

nents is rather different. The energy for longitudinal fluctuations

takes the form

Ul ¼
1

2

X
q

PlðqÞð1þ KlðqÞÞPlð � qÞ: (10)

where the extra contribution proportional to unity comes from

eqn (6). The subscript l on Kl reminds us that in the derivative

terms in the energy only longitudinal contributions, such as divP

couple to the fluctuations.

When the transverse degrees of freedom of the D-field are

integrated over, the effective energy is then

Ut ¼
1

2

X
q

PtðqÞKtðqÞPtð � qÞ: (11)

We see that the unity term is not present, since the transverse

fluctuations do not produce induced charges and do not

contribute to the energy eqn (6). Kt includes contributions to the

transverse energy such as those in curl P. Thus we expect for

q s 0 Kl and Kt are different and that Kt – Kl ¼ O(q2).
This journal is ª The Royal Society of Chemistry 2011
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In conclusion, we deduce that the longitudinal and transverse

fluctuations have a very different nature so that

Pl,Plh i ¼ kT

1þ KlðqÞ
(12)

Pt,Pth i ¼ 2kT

KtðqÞ
: (13)

This implies the following fluctuation dissipation relation for

the polarization fluctuations at long wavelengths (where Kl and

Kt are identical),

lim
q/0

P2
� �

¼ kBT3

ð23þ 1Þð3� 1Þ; (14)

where we have used the fact that in the long wavelength limit the

dielectric constant is 3¼ 1 + K�1. The rational combination of 3 is

familiar from the theory of the Kirkwood g-function.31

4 Poisson–Boltzmann simulations

As well as replacing explicit solvent degrees of freedom by an

effective dielectric medium, it is sometimes useful to coarse grain

charge degrees of freedom in electrolytes. This is often done with

the Poisson–Boltzmann equation. Standard formulations of the

Poisson–Boltzmann method applied to electrolytes lead to

challenging problems in applied mathematics: a non-linear

partial differential equation must be solved for the potential at

each time step of the simulation.32 This typically involves the use

of iterative solvers on large sets of discretized equations. A

constrained variational formulation leads instead to simpler and

more efficient formulations of the problem.

It is often convenient to construct a free energy for an elec-

trolyte in a manner which is consistent with the Poisson–Boltz-

mann equation. Conventionally the Gibbs free energy of an

electrolyte is expressed in terms of a functional of the electro-

static potential,33–35

G ¼
ð(

rf f� 3
ðgrad fÞ2

2
�
X

i

kT
n

c0
i

�
e�qif=kBT � 1

�o)
d3r

(15)

where rf is the external charge density and c0
i is the reference

density of species i in the solution. By taking variations with

respect to the potential f one then finds the conventional Pois-

son–Boltzmann equations. This functional is numerically

awkward,36 in particular the stationary solution is not

a minimum of the functional. This requires the use of sophisti-

cated iterative solvers37 in order remain thermodynamically

consistent and excludes a Car–Parrinello approach, which could

be potentially simpler and more efficient to implement.

The constrained formulation

G ¼
ð(

kBT
X

i

ci ln
�
ci=c0

i

�
þD2

23

)
d3r

with divD ¼
X

i

ciqi þ rf

(16)

leads instead to a true minimum principle for the energy. The

authors of ref. 38 showed that a local minimization scheme easily
This journal is ª The Royal Society of Chemistry 2011
converges to the correct solution of the Poisson–Boltzmann

equation. Their formulation generalizes to a Car–Parrinello

approach in which one can introduces fictitious kinetic terms in

the energy.

Rather than interpreting the functional eqn (16) as a minimum

it can also be interpreted as a coarse-grained energy13 valid at

finite temperatures. In this case one samples the charge degrees of

freedom with Monte Carlo or molecular dynamics, and there is

no need to solve the Poisson–Boltzmann equation at each time

step, nor to perform a global minimization. One can anticipate

considerable time savings in implicit solvent simulations.

5 Numerical implementation

Implementations of the local electrostatic algorithms begin with

discretization of charges and fields on a cubic electric grid.

Charges qi reside on the nodes, while the electric field compo-

nents Eij may be associated with the links connecting the nodes i

and j. At all times, the electric field must obey a discretized

version of Gauss’s law, X
j

Eij ¼ qi=h2; (17)

where h is the grid spacing and the sum runs over nearest

neighbor sites. The dynamical evolution of charges and fields

depends on the simulation method of choice.
5.1 Monte Carlo for charged lattice gases

Monte Carlo sampling of eqn (1) can be performed with the

following two elementary updates.7 First, a charge qi is moved

from site i to site j and the electric field on the traversed link is

updated according to Eij / Eij – qi/h
2 to maintain the Gauss

constraint as depicted in Fig. 1. Additionally, an integration over

the transverse field degrees of freedom must be performed. By

grouping four fields into a plaquette and incrementing two of

them by D while simultaneously decrementing the other by – D, it

is evident from Fig. 1 that Gauss’s law remains satisfied at each

vertex and only the rotational field components are changed.

Both moves are manifestly local so that the energy change can be

easily computed from the discretized energy U ¼
P

i h3E2
ij=2.

Moves are accepted or rejected according to the usual Metropolis

rule.
5.1.1 Equilibration of transverse degrees of freedom. We have

introduced a set of Monte Carlo updates that achieve the same

result as Maxwell’s equations: interactions are generated

dynamically, they propagate but they generate an effective

thermodynamic interaction equivalent to the conventional

(static) Coulomb potential. One can ask what are the continuum

evolution equations which correspond to this discrete dynamical

system? Certainly a detailed understanding of the dynamics is

needed to estimate the equilibration time of a simulation. As is

often the case in MC algorithms, the dynamics are diffusive.

The effective Langevin equation for the E-field can be shown to

be8,39

vE

vt
¼
�
V2E� Vr

�
=x� Jþ curl h=x; (18)
Soft Matter, 2011, 7, 3260–3267 | 3263
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Fig. 1 Constrained charge and field updates in MC simulations. Moving

a charge from site 1 to 2 requires modification of the electric field on the

traversed link. Changing the electric field on the links E1, 2 and E4, 1 by D

and on E3, 2 and E4, 3 by – D only changes the rotational (curl) degrees of

freedom. Reproduced from ref. 7, ª 2002 by the American Physical

Society.

Fig. 2 Scheme for temporary charge spreading (see text). Reproduced

from ref. 43, ª 2005 by the American Physical Society.
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where x is a relaxation time that can be controlled by the

frequency of transverse field updates and h is a a vector of white

noise. One notes that in the absence of current and noise the

static solution is consistent with the Poisson equation for the

electric field, and on taking the divergence of the equation one

sees that it is indeed compatible with the constraint of Gauss’s

law.

Solutions to this equation are particularly interesting in the

presence of free ions in an electrolyte, characterized by a finite

conductivity s. In this case J ¼ sE. Upon Fourier trans-

forming, one finds the relaxation time sq ¼ x/(q2 + s) for modes

of wave-vector q. From the original diffusion equation one

could have guessed that the electric field has a equilibration time

which diverges with the system size L as L2. The criterion for

equilibration is in fact much easier to obtain: the free ions must

diffuse further than the Debye length. Long wavelength modes

decay at a rate which is independent of the system size due to

the appearance of a gap in the spectrum. We interpret this gap

as the diffusive equivalent of the plasmon mode found with

Maxwell’s equations. Careful tests of the algorithm39 showed

that for reasonable ratios of particle to field updates, conver-

gence is actually limited by the particle degrees of freedom,

whose relaxation times also increase quadratically with system

size.
3264 | Soft Matter, 2011, 7, 3260–3267
Further improvements to transverse field equilibration in the

absence of free ions can be achieved by introducing global con-

strained field updates similar in spirit to worm algorithms.9,40 The

plaquette update shown in Fig. 1(b) is only the simplest kind of

update that preserves Gauss’s law. These local moves may be

supplemented with a cluster update that nucleates a pair of

positive and negative pseudo-particles on the lattice. One of the

particles then performs a random walk biased by the energy, and

the field on each traversed link is updated as before. When the

particle meets the stationary partner again, Gauss’s law is satis-

fied and the entire update is either globally accepted or refused.

These updates equilibrate the transverse field equally fast on all

length scales with minimal overhead.41 An alternative approach

suggests global updates of the transverse field of freedom via Fast

Fourier Transforms.42

5.1.2 Improving charge mobility. The algorithm as described

so far is not yet suitable for the simulation of Coulomb gases at

coupling strengths typical for many lattice models of charged

media:44 the algorithm has a kinetic barrier. Motion of a particle

between two sites of the lattice leads to a finite energy difference

which implies that the acceptance rate falls off exponentially at

low temperatures. Additionally, consecutive motion of charges

leaves behind a field trail whose energy cost grows linearly with

the number of steps. If the trail is not dispersed quickly by

transverse field updates or by other charges moving in the

vicinity, the charge mobility is greatly reduced. Both these

problems can be solved by introducing temporary charge

spreading.43 In this method, illustrated in Fig. 2, a charge is first

spread evenly onto w3 neighboring sites. The charge cloud is then

moved as a block and recondensed at the final position. Gauss’s

law must be maintained during each step. While the field on each

link during step 2 changes simply by q/h2w3, the currents ji
(1, 3)

during expansion (1) and contraction (3) are under-determined.

One possible choice for ji comes from minimizing
P

i(j
(1,3)
i )2/2; the

associated Poisson problem can be solved at the beginning of the

simulation.43 The above procedure reduces the dynamic barrier

by a factor w2, and a value of w ¼ 5 is recommended for optimal

efficiency. A closely related coupled particle-field update proce-

dure was also suggested in ref. 45.
This journal is ª The Royal Society of Chemistry 2011
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Fig. 3 Static structure factor of a symmetric electrolyte at three different

densities obtained from MD simulations using the local algorithm. ,:

particle and fields thermostatted to the same temperature, -: electric

field is damped (see text), D: results from corresponding MC simulation.

Solid lines show predictions of the Debye theory. The inset shows the

average instantaneous force in both modes. The solid curve shows the

force resulting from the potential V ¼ – 1/4pr – r2/6L3 from Ewald

summation. Reproduced from ref. 11, ª 2004 by the American Physical

Society.
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5.2 Molecular dynamics

For molecular dynamics, we sample eqn (1) by directly inte-

grating Maxwell’s equations coupled to the equations of motion

for the charges qi of mass mi,

_B ¼ �c curl E� g2Bþ~x2; mi _vi ¼ qiEðriÞ � g1vi þ~x1;

_E ¼ c curl B� J; _ri ¼ vi: (19)

The electric field E obeys Gauss’s law as an initial condition,

which is conserved by the above dynamics. Although the Lorentz

force has been dropped in the electrostatic limit, it can be shown

that the above equations of motion obey a generalized Liouville

dynamics.11 Both the charges and the magnetic field B have

additionally been coupled to Langevin thermostats, where the

dampings gi and noise terms xi are related by the fluctuation

dissipation theorem. Coupling the magnetic field to a thermostat

opens the way to running the algorithm in two modes. Main-

taining the field degrees of freedom at the same temperature

ensures ergodicity and the correct equilibrium ensemble is

guaranteed independent of the value chosen for the speed of light

c. Alternatively, the electric field can be annealed to zero

temperature by setting the noise term x2 to zero; in this case the

field always remains close to the solution of Poisson’s equation.11

Maxwell’s equations are integrated using the well-known

algorithm due to Yee,46 where the electric and magnetic fields are

associated with the links and faces of a cubic grid, respec-

tively.11,47 A velocity Verlet method can then be used to advance

the fields. An alternative implementation by Pasichnyk and

D€unweg uses an equivalent vector potential formulation.48

Stable integration requires the time-step dt to obey the Courant

condition, dt\h=
ffiffiffi
3
p

c. Thus reasonable time-steps require

choosing values of c much smaller than the speed of light; in

practice of order the particle velocity. The precise optimization

depends on the extent to which dynamical correlations are to be

resolved. The full algorithm combines the field integration with

a velocity Verlet step for the particles, see ref. 47 for details.
5.3 Charge and current interpolation, accuracy, and efficiency

In MD simulations as well as in off-lattice MC simulations,

particles move in the continuum. Interpolation of charges and

currents to the electric grid and extrapolation of energies and

forces represent the major technical challenge for the algorithms.

Point charges must be interpolated as a charge cloud over

a support of finite width, and a local current J must flow so that

the constraint divJ ¼ – Dr is obeyed at each site and time-step.

Early implementations used a low-order B-spline interpolation

combined with a regularization of the Coulomb potential at

short distances via a scalar field to minimize lattice artefacts and

aliasing errors.11,39 At this level of interpolation, all major

features of Coulombic systems are reproduced. Fig. 3 illustrates

for instance Debye screening in a symmetric electrolyte at

different concentrations and shows in the inset a direct

comparison between the electrostatic force between a pair of ions

generated by the algorithm and an analytic Ewald summation.

To improve accuracy, more recent incarnations used instead

Gaussian charge spreading over the lattice.47,49 Gaussian charge

clouds relate directly to the Ewald-formula, and their aliasing
This journal is ª The Royal Society of Chemistry 2011
error decreases more rapidly with the Gaussian width than for n-

splines. When combined with a higher order approximation for

the discretized Laplacian operator, absolute rms errors of the

forces and energies of order O(10�2�10�4) can be realized.47,49

Achieving high accuracy requires interpolation over a very large

support, since real space solvers lack efficient error subtraction

methods that are available to Fourier-based methods.

The local algorithms exhibit true linear scaling in both MC

and MD versions. The prefactor depends on the desired level of

accuracy. The locality also makes parallelization over many

processors extremely easy. A parallelized implementation was

found to compete well against a conventional PPPM electrostatic

solver at rms force errors of O(10�3).47 Without further

improvements of the charge interpolation scheme, however,

present implementations do not offer significant speed advan-

tages in standard 3D-periodic electrostatic situations for in vacuo

simulations.

5.4 Non-periodic boundary conditions

A final appealing advantage of the local electrostatic approach

consists in its flexibility in the implementation of heterogeneous

boundary conditions. Coulomb solvers relying on the Fast

Fourier Transform have difficulty dealing with exotic boundary

conditions: geometries without separable coordinate systems,

electrodes, and highly anisotropic geometries such as two

dimensional slabs. In particular the local MC algorithm can

quite easily accommodate quasi-two dimensional systems

embedded in three dimensional space by extending the electric

grid in one periodic direction and restricting particle positions to

the thin slab.50 By padding the system with empty space, inter-

actions between the periodic images fall off exponentially, and in

practice a threefold increase of the simulation box in the direc-

tion normal to the slab is sufficient. Field equilibration in the
Soft Matter, 2011, 7, 3260–3267 | 3265
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empty space can be efficiently performed with the worm algo-

rithm, and the results are formally equivalent to use of the Ewald

sum.51

Metallic boundary conditions at either constant charge or

constant potential have also been studied. Such boundary

conditions represent systems confined between electrodes. For

a surface charge density s(r), the electric field must obey

Dirichlet boundary conditions,

E(r)$n̂(r) ¼ �s(r), (20)

where n̂ is an outward facing unit surface normal. In the simu-

lation, the electric grid is terminated at the surfaces, and mobile

surface charges confined to the plane are added to render the

surface metallic.45,51 Constant potential boundary conditions at

an externally imposed potential f(ext) can be obtained through

a Legendre-transform that lets the surface charge density fluc-

tuate,50

U ½E; s� ¼ U ½E� � #
S
sfðextÞdS: (21)

This requires introducing a global MC move that transfers

charge from one surface to another, just like the current gener-

ated by a battery. Accordingly, the electric field changes every-

where in the simulation cell, but the update does not dominate

the total simulation time. Using this method, simulations of the

electric double layer at various coupling strengths were success-

fully performed, including in the regime of attractive interactions

between like-charged walls.51
6 Perspectives

Coulomb’s law without dynamic (Darwin) corrections arises

naturally from electrodynamics in a thermalized background. By

reintroducing either diffusive or propagative field dynamics,

electrostatic interactions can be generated with local algorithms

that guarantee the correct equilibrium ensemble independent of

the propagation speed of the fields. The algorithms exhibit true

linear scaling with the number of charges, with the prefactor

determined by the desired accuracy. With dynamical charge

spreading, efficient Monte Carlo simulations of charged lattice

gases at temperatures typical for soft condensed matter systems

are possible. The algorithm generates Coulombic interactions in

any dimensions; recent applications include a study of vortex

dynamics and the Nernst effect in two-dimensional supercon-

ductors.52

In the context of off-lattice simulations, the biggest potential

of the local electrostatic methods described here lies in their

greater flexibility with treating non-periodic boundary condi-

tions and their ability to treat dielectric effects in implicit solvent

simulations that retain all ionic species, but treat the solvating

water molecules only on the continuum level. Here the algorithm

competes with other real-space approaches such as multigrid

methods.53 Since fully atomistic simulations are fundamentally

limited in length and time scales, systematically coarse-grained

models that preserve important nanoscale physics can be

expected to assume a greater role in the future. Importantly, non-

local effects, which are ignored in virtually all implicit models to

date, can be systematically included. In cases where counterions

do not need to be represented explicitly, the approach also opens
3266 | Soft Matter, 2011, 7, 3260–3267
the door to more efficient simulations on the Poisson–Boltzmann

level.
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