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Dynamics of a local algorithm for simulating Coulomb interactions
A. C. Maggsa)

Laboratoire de Physico-Chime The´orique, ESPCI-CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France

~Received 26 November 2001; accepted 30 April 2002!

Charged systems interacting via Coulomb forces can be efficiently simulated by introducing a local,
diffusing degree of freedom for the electric field. This paper formulates the continuum
electrodynamic equations corresponding to the algorithm and studies the spectrum of fluctuations
when these equations are coupled to mobile charges. I compare the calculations with simulations of
a charged lattice gas, and study the dynamics of charge and density fluctuations. The algorithm can
be understood as a realization of a mechanical model of the ether. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1487821#
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I. INTRODUCTION

Molecular dynamic simulation of charged condens
matter systems is slow and difficult.1 In standard methods
such as optimized Ewald summation,2,3 fast multipole
methods4,5 or the fast Fourier transform,6 extensive and time
consuming bookkeeping is needed because of the rang
the Coulomb interaction. This bookkeeping often sca
badly when implemented on modern multiprocessor m
chines which are used in the simulation of the largest s
tems. Naive Monte-Carlo methods are particularly inefficie
since the motion of a single particle in anN particle simula-
tion requires the recalculation of the Coulomb interact
with all other particles, leading to a complexity inO(N) for
an update in the position of a single particle.

Recently,7 a local algorithmwith complexity scaling as
O(1) per update was introduced for the Monte-Carlo sim
lation of charged particles. In this algorithm an auxilia
electric fieldE is coupled to the charge density. The dyna
ics of E are chosen so that the equilibrium distribution
determined by the Coulomb interaction. Due to the loca
of the algorithm the method is trivial to implement on mu
tiprocessor machines. In this paper we study the dynamic
the algorithm in order to understand the relaxation proces
and time scales involved in a typical simulation. Simulatio
are performed on a model of a charged lattice gas to dem
strate the diffusive propagation of charge and density fl
tuations.

The algorithm is based on implementing Gauss’ law

div E5r/e0 , ~1!

in the equivalent integral form

E E.dS5q/e0 , ~2!

as an exact dynamic constraint on the Monte-Carlo al
rithm. Herer is the charge density ande0 the dielectric con-
stant andq the charge enclosed by the surface of integrat
in Eq. ~2!.

a!Electronic mail: tony@turner.pct.espci.fr
1970021-9606/2002/117(5)/1975/7/$19.00
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The system is discretized by placing charged particles
the vertices of a cubic lattice,$ i %. The electric fieldEi , j is
associated with the links$ i , j % of the lattice. The simulation
starts with Gauss’ law satisfied as an initial condition. The
are two possible Monte-Carlo moves: First, Fig. 1, we d
place a charge,e, situated on the leftmost lattice site, 1,
the rightmost site, 2. The discretized constraint is

(
j

Ei , j5ei /e0 , ~3!

with ei the charge at the sitei . The sum in Eq.~3! corre-
sponds to the total electric flux leaving the sitei . The con-
straint is again satisfied if the field associated with the c
necting link is updated according to the ruleE1,2→E1,2

2e/e0 . Second, we update the field configurations, Fig.
by modifying the four field values of a single plaquette by
pure rotation;E1,2 and E4,1 increase by an incrementD
whereasE4,3 and E3,2 decrease byD so that at each vertex
the sum of the entering and leaving fields is unchanged.
basicdynamicdegree of freedom in the second update is
circulation or rotation,Q, associated with each plaquette
the network.

In the first section of the paper we formulate the co
tinuum limit of the evolution equations and show that th
lead to diffusive evolution of the electric field. We the
couple the electric field to a mobile gas of charged partic
and compare the solutions of the coupled plasma equat
to simulations. Finally we show that the equations a
closely related to the Maxwell electromagnetic theory.

II. DIFFUSIVE ELECTRODYNAMICS

A. Fundamental equations

We start with a simple example to motivate our deriv
tion of the effective large scale equations obeyed by the e
tric field: a single particle diffusing in a harmonic potenti
with energyU5Kx2/2. The equation of motion is found b
taking the derivative of the energy with respect to the d
namic coordinatex and then balancing the resulting forc
against a relaxation process linear in the velocity,
5 © 2002 American Institute of Physics
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j
dx

dt
52Kx1 f ~ t !, ~4!

where f (t) is an external forcing term.j, the inverse mobil-
ity, sets the characteristic time scale of the relaxation ox
and is a function of the step size of the Monte-Carlo tr
moves. A first order~in time! algorithm, such as Monte
Carlo, for the simulation of a particle in such a potent
~performed near equilibrium with small step sizes! is essen-
tially a discretized realization of this stochastic different
equation. The Langevin description is completed by spec
ing f , so as to obey the fluctuation dissipation theorem.

We now turn to the equations for the electric field. Fi
we examine the field in the absence of current then we s
find the coupling of the field to external sources. The d
cretized energy of the electric field is given by

U5
e0

2 (
links

Ei , j
2 . ~5!

The basic variables in the dynamics of the field are, howe
not E but rather the rotational degrees of freedom which
updated independently at each time step. The conjugate f
acting on this variable is a torque. We define on ea
plaquette in the$x,y% plane the angular variableQz. We
group the angle corresponding to the three possible plaqu
orientations into a vectorQ. The physical fieldE is sensitive
to derivatives ofQ: Studying Fig. 2, one sees thatE1,2 is
given by thex variation of thez component ofQ. This we
recognize as part of the curl operator acting on the fieldQ.
The complete relation between a local variation inE and a
local variation inQ is thus

dE5curl dQ, ~6!

FIG. 1. Motion of a chargee from 1 to 2 is associated with a modificatio
of the field on the connecting link:E1,2→E1,22e/e0 .

FIG. 2. Modification of the angleQA
z leads to modified values of the field

between on the links$1,2%, $3,2%, $4,3%, $4,1%. The field in they direction
associated with the linkE1,2 is given by the difference of the angle
associated with the two plaquettes,QA

z andQB
z , which are aligned in thex

direction.
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where in the discretized model derivatives are to be und
stood as finite differences withE living on links andQ on
plaquettes.

Modification of the circulationQA
z in Fig. 2 by D gives

rise to a new contribution to the energy of the plaquette:

Ū5
e0

2
„~E4,11D!21~E1,21D!21~E4,32D!2

1~E3,22D!2
…. ~7!

Taking the derivative with respect toD we find a torque,C,
acting on the circulatory degree of freedom which is a d
cretized version of the curl of the field:

Cz52
]Ū
]D

52e0„~E4,12E3,2!1~E1,22E4,3!…, ~8!

52e0S ]Ey

]x
2

]Ex

]y D , ~9!

52e0k̂•curl E. ~10!

Again the three components of the torque live on t
plaquettes together with the angleQ. By analogy with Eq.
~4!, the evolution equation for the angleQ is

j
dQ

dt
5C52e0 curl E, ~11!

linking a velocity to the conjugate force. Eventually a st
chastic force should also be added into this equation but
shall not need it in what follows.

Consider now the evolution of the field in the presen
of a current. Take a network in which charges are presen
everyvertex and displace every charge to the right as in F
1. Then every bond in thex direction is modified by2e/e0

wheree is the charge displaced even though the local cha
density is unchanged. If we displace the charges at a cons
rate we have the evolution of the field due to the source

]Esource

]t
52J/e0 . ~12!

Combining Eqs.~6! and ~12! we find

]E

]t
52J/e01curl

]Q

]t
. ~13!

This equation is clearly analogous to the Maxwell equati

e0

]E

]t
52J1curl H, ~14!

if we write thatH5e0 (]Q/]t). We shall see later thatH is
indeed closely related to the magnetic degrees of freedom
classical electrodynamics. From Eqs.~10!, ~11!, ~13!,

]E

]t
5~e0¹2E2gradr!/j2J/e0 , ~15!

where we have used the standard identity curl (curlE)
5(grad divE2¹2E) and Gauss’ law. Equation~15! is the
main result of this section giving a diffusive propagation la
of the electric field in the absence of external charges
currents.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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In the static limit both the current and the time derivati
of Eq. ~15! vanish. We find the same equation for the elect
field,

¹2E5grad
r

e0
, ~16!

as is found by applying the operator (2grad) to the Poisson
equation in conventional electrostatics. When we take
divergence of Eq.~15! we discover that

S ]

]t
2

e0

j
¹2D ~div E2r/e0!50. ~17!

Again we see that Gauss’ law is implemented in the met
as an initial condition. Note that for this to be true we requ
that the Langevin noise associated with Eq.~15! does not in
itself destroy the conservation law. It is thus the curl of so
vector field.8

B. Relation to potentials

In our earlier paper7 we showed that the electric fiel
could be calculated from a scalar potentialf and a vector
potentialQ with the relationship

E52gradf1curl Q. ~18!

In Fourier space we can write this equation as

E~k!52 ikf1 ik3Q. ~19!

The second term of this expression is perpendicular tok so
that there are two transverse degrees of freedom in thQ
field, corresponding to two independent polarization sta
the longitudinal component ofQ is projected out and doe
not contribute to the electric field. We can consider that
field is due to a static longitudinal potential plus transve
photons.

If we take the time derivative of Eq.~18! we can com-
pare with Eq.~13!. The term curlQ̇ is purely transverse
whereas2J contains both longitudinal and transverse co
ponents. Thus we conclude that

curl Q̇5curl Q̇2Jt/e0 ~20!

and

gradḟ5Jl /e0 , ~21!

whereJt and Jl are the transverse and longitudinal comp
nents of the current. In general these arenonlocal relation-
ships since the projection involves a passage via Fou
components. Such nonlocal relationships between pote
and field are normal in the Coulomb gauge.9

C. Phenomenological dynamics of a two component
plasma

In this section we couple the diffusive evolution equ
tion for the electric field, Eq.~15!, to the equations describ
ing a two component plasma and study the relaxation p
nomena and time scales that are to be expected when u
the algorithm to simulate dense charged systems.

The equations of conservation and linear response
the following equations for the charge degrees of freedo
Downloaded 25 Mar 2009 to 193.54.88.108. Redistribution subject to AIP
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]c1

]t
52div J1,

]c2

]t
52div J2,

J152D gradc11emc1E, ~22!

J252D gradc22emc2E,

wherec1 and c2 are the number densities of the positiv
and negative charges,6e. J6 are the number current den
sity. From these equations we find the equations obeyed
the total densityc and the charge densityr. We note that the
diffusion coefficientD and the mobility,m, are linked by the
Einstein relationD5kBTm.

Taking the sum and difference of the equations~22!, we
find

]c

]t
5D¹2c,

]r

]t
52div J ~23!

J5e2mc0E2D gradr2e2c0m gradfe~ t !,

where we have linearized the equations about a mean de
c0 . J5eJ12eJ2 is the electric current density.fe(t) is an
externally imposed potential that we shall use to calcul
charge–charge correlation functions. Substituting Eq.~23!
for J in ~15!, we find

]E

]t
5e0 /j¹2E2e2mc0 /e0E1~D/e021/j!gradr

1e2c0m/e0 gradfe . ~24!

We analyze this equation by treating separately the long
dinal and transverse fluctuations. Take the curl of Eq.~24! to
find that the transverse components ofE decouple from the
charge density. In Fourier space we find the dispersion la

~ iv1e0 /jq21e2mc0 /e0!qÃE50. ~25!

In the absence of charges the mode is diffusive but the p
ence of a finite charge density gives a gap in the spectru

Consider now the equations for the field, Eq.~24!: With
the help of Gauss’ law one replaces the divergence of
field by the charge to find

S ]

]t
2D¹21e2mc0 /e0D r5c0e2m¹2fe , ~26!

which also applies to the longitudinal mode of the elect
field,

~ iv1Dq21e2mc0 /e0!q"E52e2c0mq2fe /e0 . ~27!

Again the spectrum has a gap asq→0.

III. NUMERICAL RESULTS

A. Dynamics

We performed simulations of a charged lattice gas
study the dynamics of the density and charge fluctuatio
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Equal numbers of positively and negatively charged partic
with e561 were placed on the vertices of a network whi
was simulated by the algorithm in a uniform dielectric bac
ground. During the simulations we measured the Fou
transform of the particle distributions,

s~q,t !5
1

AN
(

i
ei exp„i r i~ t !•qi…, ~28!

where the weightei is the charge for the charge correlatio
function and is unity for the density correlation function. W
use this information to construct the dynamic structure fac

S~q,t !5^s~q,t !s~2q,0!&. ~29!

The result is fitted with an exponential and the decay r
plotted as a function ofq2 in Figs. 3 and 4. The density–
density correlation function displays simple diffusive beha
ior. The charge–charge correlation function is characteri
by a gap atq50.

What do these dispersion relations imply for the equ
bration of a system of charged particles? The mass degre
freedom is diffusive so that a simulation equilibrates in
time which scales quadratically with the linear dimensions
the system. The charge degree of freedom is associated
a Green function which is also diffusive. However, the to
weight decays exponentially in time. The signal due to
charge fluctuation is very weak beyond the Debye length

Note that the parameters used in the derivation of
plasma dynamics are already at a coarse grained leve
description. We expect that the bare parameters are renor
ized by nonlinear interactions: While Eq.~15! is in some
sense fundamental, containing within it the exact statem
of Coulomb’s law and Boltzmann statistics, Eqs.~23! are
purely phenomenological. An example is the mobility of
particle m which in the above theoretical presentation a
pears independent of the field parameterse0 andj. However,
consider the case of a charged particle pulled by an exte
nonelectric force in the presence of an electric field wh
relaxes very slowly. As the particle moves it leaves behin

FIG. 3. Fit of a density–density, top, and a charge–charge, bottom, c
lation functions, Eq.~29!, to a single exponential. 5000 particles, a netwo
of 25325325, modeq52p3(2,2,0). Arbitrary units.
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a ‘‘string’’ of electric field due to the dynamics of Fig. 1. Thi
creates a back force on the particle which reduces its mo
ity. Monte-Carlo moves on the field spread this string ov
many lattice sites increasing the mobility of a charged p
ticle. Thus the mobility of the charged particles increas
when the field relaxes more rapidly.

This effect is an explanation of the curves of Fig.
Despite the predictions of Eqs.~23! and~26! the slope of the
charge–charge and the density–density curves are slig
different; the effective diffusion coefficient of the charg
fluctuations is lower than that of the density fluctuation
Slow relaxation of the electric degrees of freedom sho
hinder the motion of a single charged particle more tha
strongly coupled, neutral pair moving in the same directi

B. Screening

From the Poisson–Boltzmann equation it is known th
charged systems screen. We derive this result from our
namic equations as follows: Consider Eq.~26! for the charge
density in the presence of a static external potentialfe(q):

r~q!5
2q2

q21e2c0 /e0kBT

c0e2fe

kBT
, ~30!

from linear response theory the structure factor with the n
malization of Eq.~29! is given by

S~q!5
e2q2

k21q2 , ~31!

where the inverse Debye length,k, is given by the standard
expressionk25e2c0 /e0kBT. This prediction is checked in
our code by plotting 1/S(q) as a function of 1/q2, Fig. 5.

Figure 5 should be taken as very strong evidence that
algorithm is behaving correctly. It reproduces one of t

e-
FIG. 4. Characteristic time extracted fromS(q,t) as a function ofq2. Bot-
tom curve: Density–density correlations: the mode is diffusive, Eq.~23!.
Top curve: The charge–charge correlation function has a gap, in agree
with Eq. ~26!. Selected modes between (q/2p)251, q52p3(1,0,0) and
(q/2p)2518, q52p3(4,1,1). 1000 particles, 18318318 mesh. The ver-
tical axis is in arbitrary units.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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most striking features of charged systems, the expone
decay of the charge–charge correlation function due to
bye screening.

C. Numerical stability

In the simulations that we performed to study the d
namic and screening properties of the algorithm we w
agreeably surprised by the numerical stability of the al
rithm: At each update one makes an errorep comparable to
the round off error of the computer. Over many time ste
this accumulates so that Gauss’ law is violated. We fea
that this local error would rapidly become important.

The slow propagation~in time! of numerical errors can
be understood by consideration of Eq.~17!. Local fluctua-
tions in the constraint divE2r/e050 spread out via a dif-
fusion process. Since both positive and negative errors
made during a simulation there is a large degree of can
lation occurring. After a single Monte-Carlo sweep of t
system Gauss’ law is violated byO(ep) at each lattice site
However, averaged over a sample withL3 sites the average
error per site isO(ep /L3/2). When simulated forO(L2)
sweeps the system comes to equilibrium under the diffus
propagation of the charge and density fluctuations, we
errors of onlyO(ep /L1/2) per site. The high statistics curve
of this paper were generated by using runs of length up
5000 times the equilibration time. Even here the errors
mained acceptably small.

IV. PROPAGATIVE FIELD EQUATIONS

A. Maxwell’s equations

In Eq. ~15! we gave the equations of motion for th
electric field obeyed in the continuum limit of a Monte-Car
simulation. In this section we shall see how local impositi
of Gauss’ law can be used to find a propagative dynamics
the evolution of the electric field. We continue to describe
basic dynamic degree of freedom as an angular variableQ,

FIG. 5. A plot of 1/S(q) as a function of (2p/q)2. The plot is linear as
implied by Eq. ~31!. Selected modes between 2p3(1,1,0) out to 2p
3(5,5,5). The plasma screens interactions exponentially. 5000 charges
network of 25325325.
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which is linked to the electric field by Eq.~13!. This variable
is associated with a angular velocity,vu , and moment of
inertia, I u . The resulting second order equations will displ
propagating, wave like features rather than the diffus
propagation characteristic of Eq.~15!.

Each link fieldEi , j is the result of the rotation of a vari
able Q defined on the faces of the cube rotating at angu
velocity vu . As above the torque on the rotational degree
freedom of a plaquette is given byC52e0curl E. Using
Eqs.~6! and~12! we find the following equations obeyed b
the fields:

I u

]vu

]t
52e0 curl E,

]E

]t
5curl vu2J/e0 , ~32!

div E5r/e0 ,

where the differential operators are to be interpreted as
appropriate difference when acting on the lattice variab
The equations~32! are a rescaled version of Maxwell’s equ
tions with vu playing the role of the magnetic fieldH.

In order to find the coupling between particles and t
variablesQ we are obliged to use the formalism of Lagran
ian dynamics. Naive arguments based on energy cons
ations are ambiguous and can easily lead to wrong resu

B. Lagrangian treatment of dynamics

We shall now show how to derive the full coupled equ
tions between particle motion and field. First, however,
shall look at a simple illustrative example in order bring o
the main formal features of constrained Lagrangian dyna
ics.

Consider two gears described by the rotation anglew
andc. We take these gears to have unit inertia and impose
them a potential energyg(w) and h(c). The gears are in
contact and are thus submitted to the rolling constraint

ẇ1ċ50. ~33!

We find that the Lagrangian describing this system is sim

L5
ẇ2

2
1

ċ2

2
2g2h1A~ ẇ1ċ !, ~34!

where the Lagrange multiplierA imposes the constraint
Note that we arenot using the standard method o
D’Alembert of imposing nonholonomic constraints b
rather the ‘‘vakonomic’’ method10 in which the fieldA is
itself considered an independent dynamic variable. S
methods are widely used in field theory; see, for instance,
book of Schwinger.11

From this Lagrangian we find the equations of moti
and the momenta. For instance,

pw5ẇ1A ~35!

and

n a
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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d2w

dt2
52

dg

dw
2

dA

dt
. ~36!

These equations linking the momentumpw to the velocity
and the equation for the acceleration of the variablew are
remarkably similar to those found in electromagnetism if o
interpretsA as the vector potential.

We shall now use the same trick of considering the c
strained Lagrangian dynamics of the fieldQ to find the
coupled equations for the field and moving particles. We
terpret the variableQ̇ as a rotation velocity andE2 as a
potential energy. For notational simplicity we consider u
mass particles and a system of units wheree05I Q51. We
find the following Lagrangian:

L5(
i

ṙ i
2

2
1E d3r S Q̇2

2
2

E2

2
D

1E d3rA •S Ė2curl Q̇1(
i

qid~r2r i ! ṙ i D . ~37!

Here the Lagrange multiplierA imposes the kinematic con
straint, Eq.~13!, in a manner analogous to the rolling co
straint for the gears. We find the equations of motion by
usual variational calculus: it is useful to note that the c
operator is self adjoint with appropriate boundary conditio
so that*A•curl B d3r5*B•curl A d3r ,

dQ: Q̈2curl Ȧ50,

dE: E1Ȧ50,
~38!

dr i : r̈ i1qi

dA

dt
2qi grad~ ṙ i .A!50,

dA: Ė2curl Q̇1(
i

qid~r2r i ! ṙ i50.

The variation indr i can be rewritten by using the iden
tity grad(v.A)5(v.grad)A1v3curl A and by noting that
d/dt 5(]/]t 1v.grad),

r̈ i1qiȦ2qi ṙ i3curl A50,
~39!

r̈ i5qi~E1 ṙ i3curl Q̇!.

These are the normal equations of electromagnetism if
identify Q̇ with B. The Lagrangian corresponds to thetem-
poral gaugewhere the scalar potentialf50. A gauge trans-
formation A→A1gradC(t) generates additional terms i
the Lagrangian of the formf(div E2r) with f5]C/]t.

We can eliminateQ̇ from the Lagrangian via the
Thomson–Routh treatment of kinesthenic variables: C
sider the modified actionL̄5L2pu•Q̇. We find that

L̄5(
i

ṙ i
2

2
2E d3r S ~curl A!2

2
1

E2

2 D
1E d3rA •~Ė1J!, ~40!

which we recognize11 as a more conventional Lagrangian f
electrodynamic systems.
Downloaded 25 Mar 2009 to 193.54.88.108. Redistribution subject to AIP
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We construct the Hamiltonian using Dirac’s procedu
with two constraints:

H5(
i

~pi2qiA~r i !!2

2
1E ~pu1curl A!2

2
d3r

1E S E2

2
1mpA1g~pE2A! Dd3r , ~41!

where m5E, g5Ė. The initial conditions arepE5A, pA

50 andpu50 which are conserved by the equations of m
tion in the same way that Gauss’ law is conserved in
Monte-Carlo formulation. On the physically relevant surfa
the constraint terms are identically zero; the extended Ha
tonian still has the normal interpretation as the conser
total energy.

Such a description of the electromagnetic field in ter
of rotors was known to FitzGerald in the nineteenth cent
as a mechanical analogy12,13 of the ether. A square array o
wheels was constructed; neighboring wheels were conne
by an elastic band. When two neighboring wheels turn at
same angular velocity the elastic band has constant le
and the elastic energy is constant. When there is a differe
of rotational velocity between wheels the elastic energy
the bands changes. Assuming linear elasticity for the ela
bands one finds an exact mapping of electromagnetism
a mechanical problem. This model was most important in
history of electromagnetism: FitzGerald used this mode
the very first calculation of radiated power from movin
charges.

C. Statistical mechanics

The interpretation ofQ̇ as the angular velocity of a roto
suggests that it could be coupled to a thermostat to impr
equilibration of the field degrees of freedom; the linear eq
tions that we have found for the electric field are likely
equilibrate rather slowly. If we add coupling to extern
noise,zW and friction,G, in Eq. ~38!, we find

Q̈5curl Ȧ2GQ̇1zW~ t !, ~42!

thus coupling the angular velocity to an arbitrary thermos
leads to violation of the Maxwell equation divB50.

The partition function is calculated from

Z5E DpDqe2bH. ~43!

The integral is over the canonical coordinatesq and mo-
mentap. The integration region is the set of configuratio
available to the equations of motion. We thus implicity i
clude delta function constraints onpE and pA . Integration
over the momenta is easy to perform in the presence
Langevin noise which destroys the constraints and conse
tion laws associated with the variablepu in Maxwell’s equa-
tions. What remains is the integral over the electric fields a
particle positions. If the dynamics were ergodic we wou
integrate over all values of the field. However, Maxwel
equations, even in the presence of noise on the momen
degree of freedom, include Gauss’ law. This constrains
electric field and the partition function is given by
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Zc5E Dr i E DEe2* ~be0E2/2!d3r)
r

d~div E2r/e0!,

~44!

where, now, all degrees of freedom are freely integrated o
It is this constrained configurational integral7 that leads to
effective Coulomb interactions.

Combining Eqs.~13! and ~42! we find the equation for
the electric field:

]

]t S ]

]t
1G DE5¹2E2gradr2S G1

]

]t D J1curl zW~ t !.

~45!

In the limit of low frequencies we can ignore]/]t compared
to G and find an equation entirely equivalent to Eq.~15!. The
damping strongly modifies the large scale nature of the e
tric field dynamics.

This result seems quite remarkable. It is known from
work of Heaviside14 that the electric field of a moving par
ticle is strongly modified at velocities which approachc, the
speed of light. Despite this, Eq.~44! implies that the average
interaction between particles is independent of this long
dinal contraction of the electric field. Either this is a cons
quence of the full Maxwell equations which has not yet be
or explored or it is a consequence of relaxing the constr
on the divergence of the magnetic field leading to the mo
fied large scale properties implied in Eq.~45!. We leave the
further study of this problem to a future publication. In eith
case this could permit the study of the Coulomb interact
particles via direct integration of the Maxwell equations
molecular dynamics simulations.

V. CONCLUSIONS

We have analyzed a Monte-Carlo algorithm for t
simulation of long ranged Coulomb interactions. We ha
Downloaded 25 Mar 2009 to 193.54.88.108. Redistribution subject to AIP
r.
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seen that propagation of the electric degrees of freedom
diffusive. By construction the dynamics sample the equil
rium Boltzmann distribution of the charged system. The
cality of the algorithm allows fast andsimple implementa-
tions even on multiprocessor computers with hi
communication overheads. We have verified that the Mon
Carlo algorithm reproduces well known features of the t
component plasma such as screening. Our law for thelocal
update of the electric field after movement of a particle, F
1, is a discretized version of the Maxwell displacement c
rent. The algorithm has been shown to be closely relate
mechanical models of the ether introduced in the genera
that followed Maxwell.
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