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Dynamics of a local algorithm for simulating Coulomb interactions
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Charged systems interacting via Coulomb forces can be efficiently simulated by introducing a local,
diffusing degree of freedom for the electric field. This paper formulates the continuum
electrodynamic equations corresponding to the algorithm and studies the spectrum of fluctuations
when these equations are coupled to mobile charges. | compare the calculations with simulations of
a charged lattice gas, and study the dynamics of charge and density fluctuations. The algorithm can
be understood as a realization of a mechanical model of the eth@002 American Institute of
Physics. [DOI: 10.1063/1.1487821

I. INTRODUCTION The system is discretized by placing charged particles on

o ) the vertices of a cubic latticdj}. The electric fieldE; ; is
Molecular dynamic simulation of charged condensed ’

, icd associated with the link§,j} of the lattice. The simulation
matter systems S slow and diffic Iun' standard mthods, starts with Gauss’ law satisfied as an initial condition. There
such as optimized Ewald summatidh, fast multipole

&5 ! & - - are two possible Monte-Carlo moves: First, Fig. 1, we dis-
methodS™ or the fast Fourier transforfextensive and time place a charges, situated on the leftmost lattice site, 1, to

consuming bookkeeping is needed because of the range ffe rightmost site, 2. The discretized constraint is
the Coulomb interaction. This bookkeeping often scales

badly when implemented on modern multiprocessor ma-
chines which are used in the simulation of the largest sys- 2 Eij=eileo, ©)
tems. Naive Monte-Carlo methods are particularly inefficient
since the motion of a single particle in &hparticle simula-  with e; the charge at the site The sum in Eq(3) corre-
tion requires the recalculation of the Coulomb interactionsponds to the total electric flux leaving the siteThe con-
with all other particles, leading to a complexity @(N) for straint is again satisfied if the field associated with the con-
an update in the position of a single particle. necting link is updated according to the rukg ,—E,,
Recently’ a local algorithmwith complexity scaling as —e/e,. Second, we update the field configurations, Fig. 2,
O(1) per update was introduced for the Monte-Carlo simu-y modifying the four field values of a single plaquette by a
lation of charged particles. In this algorithm an auxiliary pure rotation;E;, and E,; increase by an incremenkt
electric fieldE is coupled to the charge density. The dynam-whereasE, ; and E;, decrease by so that at each vertex
ics of E are chosen so that the equilibrium distribution isthe sum of the entering and leaving fields is unchanged. The
determined by the Coulomb interaction. Due to the localitybasicdynamicdegree of freedom in the second update is a
of the algorithm the method is trivial to implement on mul- circulation or rotation®, associated with each plaquette of
tiprocessor machines. In this paper we study the dynamics afe network.
the algorithm in order to understand the relaxation processes In the first section of the paper we formulate the con-
and time scales involved in a typical simulation. Simulationstinuum limit of the evolution equations and show that they
are performed on a model of a charged lattice gas to demoread to diffusive evolution of the electric field. We then
strate the diffusive propagation of charge and density fluceouple the electric field to a mobile gas of charged particles
tuations. and compare the solutions of the coupled plasma equations
The algorithm is based on implementing Gauss’ law  to simulations. Finally we show that the equations are

) closely related to the Maxwell electromagnetic theory.
divE=p/e, 1)

in the equivalent integral form
Il. DIFFUSIVE ELECTRODYNAMICS

J E.dS=q/eg, (2)  A. Fundamental equations

) ) We start with a simple example to motivate our deriva-
as an exact dynamic constraint on the Monte-Carlo algogiony of the effective large scale equations obeyed by the elec-
rithm. Herep is the charge density ang the dielectric con- e field: a single particle diffusing in a harmonic potential
stant andj the charge enclosed by the surface of integration,;i, energyli= Kx2/2. The equation of motion is found by

in Eq. (2). taking the derivative of the energy with respect to the dy-
namic coordinatex and then balancing the resulting force

dElectronic mail: tony@turner.pct.espci.fr against a relaxation process linear in the velocity,
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where in the discretized model derivatives are to be under-
stood as finite differences with living on links and® on

Ein 2 plaguettes.
/\ Modification of the circulatior® in Fig. 2 by A gives
\/e — rise to a new contribution to the energy of the plaquette:

€ 2 2 A2
u > (Eg1tA)°+(E1 o+t A)°+(Es3—A)

2
FIG. 1. Motion of a charge from 1 to 2 is associated with a modification +(E3,2_ A)?). (7)

of the field on the connecting Nk, ,— 4.~ €/ €. Taking the derivative with respect tb we find a torqueC,

acting on the circulatory degree of freedom which is a dis-
cretized version of the curl of the field:

dX— Kx+f(t 4
e JT . A U
- —_¢ - _ ,

wheref(t) is an external forcing terng, the inverse mobil- ‘ dA R L2 =4
ity, sets the characteristic time scale of the relaxatiorx of JEY  gEX
and is a function of the step size of the Monte-Carlo trial = _60<__ _) (9
moves. A first order(in time) algorithm, such as Monte- gx  dy
Carlo, for the simulation of a particle in such a potential — egk-curl E. (10)

(performed near equilibrium with small step sizésessen-

tially a discretized realization of this stochastic differential Again the three components of the torque live on the

equation. The Langevin description is completed by specifyplaquettes together with the angi® By analogy with Eq.

ing f, so as to obey the fluctuation dissipation theorem.  (4), the evolution equation for the ang& is

We now turn to the equations for the electric field. First

we examine the field in the absence of current then we shall ¢——=C=—¢, curl E, (17

find the coupling of the field to external sources. The dis-

cretized energy of the electric field is given by linking a velocity to the conjugate force. Eventually a sto-
chastic force should also be added into this equation but we

E Eizj- (5) shall not need it in what follows.

finks Consider now the evolution of the field in the presence

The basic variables in the dynamics of the field are, howeve®f & current. Take a network in which charges are present at

not E but rather the rotational degrees of freedom which aré@veryvertex and displace every charge to the right as in Fig.

updated independently at each time step. The conjugate forde Then every bond in the direction is modified by-e/eg

acting on this variable is a torque. We define on eactvheree is the charge displaced even though the local charge

plaguette in the{x,y} plane the angular variabl®? We  density is unchanged. If we displace the charges at a constant

group the angle corresponding to the three possible plaquetfate we have the evolution of the field due to the source as

orientations into a vectd®. The physical fielcE is sensitive IE source

to derivatives of@®: Studying Fig. 2, one sees thkt , is Framb —Jleg. (12

given by thex variation of thez component of®. This we

recognize as part of the curl operator acting on the fi@ld Combining Eqs(6) and(12) we find

The complete relation between a local variatiorEirand a

_
U=3

L . JE 0
local variation in® is thus e —Jl e+ curlﬁ. (13
SE=curl 50, (6) . L .
This equation is clearly analogous to the Maxwell equation,
JE
3 Es;p» 2 €0 = —J+curl H, (14
if we write thatH= e, (d0/dt). We shall see later thad is
E o’ E o’ indeed closely related to the magnetic degrees of freedom of
43 A 1,2 B . i
classical electrodynamics. From Eq@$0), (11), (13),
JE
4 = — =(eyV’E—gradp)/é—Jl e, (15)

4,1
where we have used the standard identity curl (&)rl
FIG. 2. Modification of the angl®3 leads to modified values of the field _ (grad diVE—VZE) and Gauss’ law EquatioﬁlS) is the
between on the link$1,2}, {3,2}, {4,3}, {4,1}. The field in they direction . . . L y . .
associated with the linkE;, is given by the difference of the angles main result 9f th_ls S?Ctlon giving a diffusive propagation law
associated with the two plaquettéZ and©3%, which are aligned in the of the electric field in the absence of external charges and

direction. currents.

Downloaded 25 Mar 2009 to 193.54.88.108. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 117, No. 5, 1 August 2002 Dynamics of a local algorithm 1977

In the static limit both the current and the time derivative oc™

of Eqg. (15) vanish. We find the same equation for the electric T divJ™,
field,
Jc — v
V2E=grad§, (16) gt Ve
0
J*=—Dgradc” +euc’E, (22)

as is found by applying the operator grad) to the Poisson
equation in conventional electrostatics. When we take the j~=_—p gradc™—euc™E,

divergence of Eq(15) we discover that N N . .
wherec™ andc™ are the number densities of the positive

and negative charges;e. J* are the number current den-
sity. From these equations we find the equations obeyed by
éhe total densityc and the charge densipy We note that the
diffusion coefficientD and the mobility,u, are linked by the
Einstein relationD =kgT u.

Taking the sum and difference of the equati¢2g), we

i — EVZ
ot &
Again we see that Gauss’ law is implemented in the metho
as an initial condition. Note that for this to be true we require
that the Langevin noise associated with Etp) does not in
itself destroy the conservation law. It is thus the curl of some,

8 ind
vector field:

(divE—pley)=0. a7

Jc _ 5
B. Relation to potentials E_DV ¢
In our earlier papérwe showed that the electric field ap
could be calculated from a scalar potentigland a vector e —divJ (23
potentialQ with the relationship
a2 _ _e2
E=—grade+curl Q. (18) J=e“ucoE—D gradp—e“cou gradepe(t),

where we have linearized the equations about a mean density
Co. J=eJ"—eJ” is the electric current density(t) is an

E(k)=—ik¢+ikxQ. (190 externally imposed potential that we shall use to calculate
The second term of this expression is perpendiculdc o charge—charge correlation functions. Substituting &)

that there are two transverse degrees of freedom inQthe for Jin (15), we find
field, corresponding to two independent polarization states; JE

In Fourier space we can write this equation as

the longitudinal component o is projected out and does E=60/§V2E—82MC0/60E+(D/60—1/§)gfadp

not contribute to the electric field. We can consider that the

field is due to a static longitudinal potential plus transverse +e?Coul €y grade,. (29
photons.

. o We analyze this equation by treating separately the longitu-
I W_e take the time derivative .of.quS) We can com-  ginal and transverse fluctuations. Take the curl of 9) to
pare with Eq.(13). The term curl® is purely transverse, fing that the transverse componentsibtiecouple from the

ponents. Thus we conclude that

_ _ (io+eglé9%+e%ucyl€g) QXE=0. (25)
curl Q=curl ©@=Ji/€ (20 In the absence of charges the mode is diffusive but the pres-
and ence of a finite charge density gives a gap in the spectrum.
grad¢=J|/eo, 21) Consider now the equations for the field, E24): With

the help of Gauss’ law one replaces the divergence of the
where J; andJ, are the transverse and longitudinal compo-field by the charge to find
nents of the current. In general these aomlocal relation-

ships since the projection involves a passage via Fourier | — —DV2+e2ucy/eq|p=Coe?uV26s,, (26)

components. Such nonlocal relationships between potential

and field are normal in the Coulomb gatfge. which also applies to the longitudinal mode of the electric
field,

FC):I.az’rr:](zlnomenologlcal dynamics of a two component (iw+ DR+ €2ucyl €0) - E= — €2CouP e/ 5. 27

In this section we couple the diffusive evolution equa—Ag"’“n the spectrum has a gap @s>0.

tion for the electric field, Eq(15), to the equations describ-

ing a two component plasma and study the relaxation pheq|. NUMERICAL RESULTS

nomena and time scales that are to be expected when usig\g

the algorithm to simulate dense charged systems. '
The equations of conservation and linear response give We performed simulations of a charged lattice gas to

the following equations for the charge degrees of freedom: study the dynamics of the density and charge fluctuations.

Dynamics
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FIG. 3. Fit of a density—density, top, and a charge—charge, bottom, corre-

lation functions, Eq(29), to a single exponential. 5000 particles, a network FIG. 4. Characteristic time extracted fra®q,t) as a function ofy?. Bot-

of 25X 25X 25, modeq=2mX(2,2,0). Arbitrary units. tom curve: Density—density correlations: the mode is diffusive, @8).
Top curve: The charge—charge correlation function has a gap, in agreement
with Eq. (26). Selected modes betweeq/2w)?=1, q=27X(1,0,0) and
(q/27)?=18, q=27x(4,1,1). 1000 particles, 2818x 18 mesh. The ver-

Equal numbers of positively and negatively charged particlegcal axis is in arbitrary units.

with e= =1 were placed on the vertices of a network which
was simulated by the algorithm in a uniform dielectric back-

?rg)nus?g}mD(l)J; Itnhge t[:t]aertif:llrem(jjlii?r(i)t:‘jti(\;\:les measured the Fou”eé “string” of electric field due to the dynamics of Fig. 1. This

creates a back force on the particle which reduces its mobil-
1 ity. Monte-Carlo moves on the field spread this string over
s(q,t)= \/——2 e explir;(t)-q), (28)  many lattice sites increasing the mobility of a charged par-
N ticle. Thus the mobility of the charged particles increases
where the weighg, is the charge for the charge correlation when the field relaxes more rapidly.
function and is unity for the density correlation function. We This effect is an explanation of the curves of Fig. 4.
use this information to construct the dynamic structure factoDespite the predictions of Eq&3) and(26) the slope of the
_ charge—charge and the density—density curves are slightly
S(q.)=(s(a,0)s(~,0). (29 different; the effective diffusion coefficient of the charge
The result is fitted with an exponential and the decay ratdluctuations is lower than that of the density fluctuations.
plotted as a function 0§? in Figs. 3 and 4. The density— Slow relaxation of the electric degrees of freedom should
density correlation function displays simple diffusive behav-hinder the motion of a single charged particle more than a
ior. The charge—charge correlation function is characterizedtrongly coupled, neutral pair moving in the same direction.
by a gap ag=0.
What do these dispersion relations imply for the equili-
bration of a system of charged particles? The mass degree @f screening
freedom is diffusive so that a simulation equilibrates in a ) o
time which scales quadratically with the linear dimensions of ~ From the Poisson—Boltzmann equation it is known that
the system. The charge degree of freedom is associated wiffiarged systems screen. We derive this result from our dy-
a Green function which is also diffusive. However, the total"@mic equations as follows: Consider ER©) for the charge
weight decays exponentially in time. The signal due to adensity in the presence of a static external potertidly):
charge fluctuation is very weak beyond the Debye length. -2 Co€be
Note that the parameters used in the derlyatlon of the p(Q)= 9%+ e%ColeokaT KgT
plasma dynamics are already at a coarse grained level of
description. We expect that the bare parameters are renormdfom linear response theory the structure factor with the nor-
ized by nonlinear interactions: While E¢15) is in some malization of Eq.(29) is given by
sense fundamental, containing within it the exact statement
of Coulomb’s law and Boltzmann statistics, Ed23) are S(q)
purely phenomenological. An example is the mobility of a
particle u which in the above theoretical presentation ap-where the inverse Debye lengtk, is given by the standard
pears independent of the field parametgrand¢. However,  expressionk?=e?c,/e,kgT. This prediction is checked in
consider the case of a charged particle pulled by an externalur code by plotting B(q) as a function of 12, Fig. 5.
nonelectric force in the presence of an electric field which  Figure 5 should be taken as very strong evidence that our
relaxes very slowly. As the particle moves it leaves behind italgorithm is behaving correctly. It reproduces one of the

(30)

eZqZ

W &Y
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12 - ' - - - which is linked to the electric field by E413). This variable
8 is associated with a angular velocity,, and moment of
1ok i inertia, 1 ,. The resulting second order equations will display
propagating, wave like features rather than the diffusive
propagation characteristic of E(L5).
ar s T Each link fieldE; ; is the result of the rotation of a vari-
5 able ® defined on the faces of the cube rotating at angular
& 6r S . velocity v,. As above the torque on the rotational degree of
- 5 freedom of a plaquette is given b@= — epcurl E. Using
al ® | Egs.(6) and(12) we find the following equations obeyed by
o the fields:
2_&00/6 | Iﬁ%:—eocurl E,
0 i . . i .
0 0.1 0.2 o 1?.3/q)2 0.4 0.5 0.6 % _curl v,—Jleg, (32

FIG. 5. A plot of 15(q) as a function of (2/q)2. The plot is linear as
implied by Eq.(31). Selected modes betweenr&(1,1,0) out to 2r

X (5,5,5). The plasma screens interactions exponentially. 5000 charges o
network of 25< 25X 25.

divE=pl/eg,

"Where the differential operators are to be interpreted as the
appropriate difference when acting on the lattice variables.
The equation$32) are a rescaled version of Maxwell's equa-
most striking features of charged systems, the exponentiaions with v, playing the role of the magnetic field.

decay of the charge—charge correlation function due to De- In order to find the coupling between particles and the

bye screening. variables® we are obliged to use the formalism of Lagrang-
ian dynamics. Naive arguments based on energy consider-
C. Numerical stability ations are ambiguous and can easily lead to wrong results.

In the simulations that we performed to study the dy-
namic and screening properties of the algorithm we were
agreeably surprised by the numerical stability of the algoB. Lagrangian treatment of dynamics
rithm: At each update one makes an eregrcomparable to

the round off error of the computer. Over many time stepst We shall now show how to derive the full coupled equa-

) : L ons between particle motion and field. First, however, we
this accumulates so that Gauss’ law is violated. We feare . . . . .
. . : Shall look at a simple illustrative example in order bring out
that this local error would rapidly become important.

PR . the main formal features of constrained Lagrangian dynam-
The slow propagatiofin time) of numerical errors can

. . ics.
be understood by consideration of E4.7). Local fluctua- . . .
tions in the constraint diz— p/ey=0 spread out via a dif- Consider two gears described by the rotation angles

fusion process. Since both positive and negative errors ar%]ndw' we take.tr;ese gears to havE unit |nﬁrt|a and IMpose on

made during a simulation there is a large degree of cancef— em a potentia energg(@ and h(i). T.e gears are in

lation occurring. After a single Monte-Carlo sweep of thecontact and are thus submitted to the rolling constraint

system Gauss’ law is violated b9(e,) at each lattice site. o+ y=0. (33)

However, averaged over a sample wit sites the average

error per site isO(e,/L%%. When simulated foro(L?)  We find that the Lagrangian describing this system is simply

sweeps the system comes to equilibrium under the diffusive 2 2

propagation of the charge and density fluctuations, we find _ S

errors of onIyO(ep/Ll’Z) per site. The high statistics curves L= 2 * 2 g-h+Alety), (34

of this paper were generated by using runs of length up to o . .

5000 times the equilibration time. Even here the errors reyvhere the Lagrange mult|.pl|eA imposes the constraint.

mained acceptably small. Note that we are no_t using the sta_ndard mthod of
D’Alembert of imposing nonholonomic constraints but

rather the “vakonomic” metholf in which the fieldA is

itself considered an independent dynamic variable. Such

A. Maxwell’'s equations methods are widely used in field theory; see, for instance, the

In Eq. (15) we gave the equations of motion for the POok of Schwinget:
electric field obeyed in the continuum limit of a Monte-Carlo ~ From this Lagrangian we find the equations of motion
simulation. In this section we shall see how local imposition@nd the momenta. For instance,
of Gauss’ law can be used to find a propagative dynamics for Do=o+A (35)
the evolution of the electric field. We continue to describe the ¢
basic dynamic degree of freedom as an angular vari&ghle, and

IV. PROPAGATIVE FIELD EQUATIONS
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d?e dg dA We construct the Hamiltonian using Dirac’s procedure
a2 de dt (36)  with two constraints:
—a.Ar:))2 2

These equations linking the momentym to the velocity H=3 (Pi—GiA(r)) +J' (pgtcurl A) &

and the equation for the acceleration of the variaplare i 2 2

remarkably similar to those found in electromagnetism if one 2

interpretsA as the vector potential. o +f o+ upat y(pE—A))d3r, (41)
We shall now use the same trick of considering the con-

strained Lagrangian dynamics of the fietdl to find the where u=E, y=E. The initial conditions ar@z=A, pj
coupled equations for the field and moving particles. We in-:0 andp,=0 which are conserved by the equations of mo-

terpret the variable® as a rotation velocity and?® as a tion in the same way that Gauss’ law is conserved in the
potential energy. For notational simplicity we consider unityjonte-Carlo formulation. On the physically relevant surface
mass particles and a system of units whegeslg=1. We  the constraint terms are identically zero; the extended Hamil-
find the following Lagrangian: tonian still has the normal interpretation as the conserved
P2 02 E2 total energy.
L=, —'+f d3r(—— — Such a description of the electromagnetic field in terms
T2 2 2 of rotors was known to FitzGerald in the nineteenth century
as a mechanical analotfy'® of the ether. A square array of
+f d3rA - ( E—curl ®+Z q;o(r— ri)h). (370  wheels was constructed; neighboring wheels were connected
: by an elastic band. When two neighboring wheels turn at the
Here the Lagrange multiplieh imposes the kinematic con- same angular velocity the elastic band has constant length
straint, Eq.(13), in a manner analogous to the rolling con- and the elastic energy is constant. When there is a difference
straint for the gears. We find the equations of motion by thedf rotational velocity between wheels the elastic energy of
usual variational calculus: it is useful to note that the curlthe bands changes. Assuming linear elasticity for the elastic
operator is self adjoint with appropriate boundary conditiongands one finds an exact mapping of electromagnetism onto

so thatfA-curl B d® = [B-curl A d®r, a mechanical problem. This model was most important in the
.. . history of electromagnetism: FitzGerald used this model in
60:  O-curl A=0, the very first calculation of radiated power from moving
SE: E+A=0 charges.
(38)

PR (Z_?_qi grad(, A)=0, C. Statistical mechanics |
The interpretation 0® as the angular velocity of a rotor

. . . suggests that it could be coupled to a thermostat to improve
6A:  E—curl ®+Ei qi6(r—rpf;=0. equilibration of the field degrees of freedom; the linear equa-

tions that we have found for the electric field are likely to

The variation indr; can be rewritten by using the iden- equilibrate rather slowly. If we add coupling to external

tity grad(v.A)=(v.gradA+vXcurl A and by noting that noise,Z and friction, T, in Eq. (38), we find

d/dt=(d/dt +v.grad),

) . O=curl A—TO+ (1), (42)
ii+qg;A—q;fixcurl A=0, . ] ]

. (39) thus coupling the angular velocity to an arbitrary thermostat
fi=q;(E+r;Xcurl @). leads to violation of the Maxwell equation dd~ 0.

These are the normal equations of electromagnetism if we The partition function is calculated from

identify @ with B. The Lagrangian corresponds to then- :j ~BH
poral gaugewhere the scalar potentigl=0. A gauge trans- z PpDage (43
formation A—A+grad¥(t) generates additional terms in The integral is over the canonical coordinagsand mo-

the Lagrangian of the formp(div E—p) with ¢=aW/dt. mentap. The integration region is the set of configurations

We can eliminate® from the Lagrangian via the ayailable to the equations of motion. We thus implicity in-
Thomson—Routh treatment of kinesthenic variables: Conc|ude delta function constraints Qo and Pa- |ntegration

sider the modified actiof=£—p,-©. We find that over the momenta is easy to perform in the presence of
o 2 2 Langevin noise which destroys the constraints and conserva-
— r (curl A)* E . . . . . .
L= —— | d&¥| ————+ = tion laws associated with the varialpg in Maxwell's equa-
T2 2 2 tions. What remains is the integral over the electric fields and
particle positions. If the dynamics were ergodic we would
+f d3rA - (E+J), (40)  integrate over all values of the field. However, Maxwell’s
equations, even in the presence of noise on the momentum

which we recogniz€ as a more conventional Lagrangian for degree of freedom, include Gauss’ law. This constrains the
electrodynamic systems. electric field and the partition function is given by
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seen that propagation of the electric degrees of freedom is
Z = Dr- DE —f(ﬁeoEZ/Z)d3rH S(divE— o/ . . . . -
= r e : (divE—ple), diffusive. By construction the dynamics sample the equilib-
(44) rium Boltzmann distribution of the charged system. The lo-
_ cality of the algorithm allows fast ansimpleimplementa-
where, now, all degrees of freedom are freely integrated OVefions even on multiprocessor computers with high
It is this constraingd conf!gurational integfahat leads to communication overheads. We have verified that the Monte-
effective C_:qulomb Interactions. i . Carlo algorithm reproduces well known features of the two
Comb.'”'r.‘g Eqs(13) and (42 we find the equation for component plasma such as screening. Our law foldbal
the electric field: update of the electric field after movement of a particle, Fig.
. 1, is a discretized version of the Maxwell displacement cur-
J+ceurl £(1). rent. The algorithm has been shown to be closely related to
(45) mechanical models of the ether introduced in the generation
that followed Maxwell.

a—I—F
ot

1%
_v2F_ _ _
pr E=V‘E—gradp—|I'+ 7

In the limit of low frequencies we can ignorédt compared
to I' and find an equation entirely equivalent to Et5). The
damping strongly modifies the large scale nature of the elec-
tric field dynamics.

This result seems quite remarkable. It is known from the | _ .
work of Heavisidé* that the electric field of a moving par- L‘ef’mcglr']csk’aﬁa i' gzﬁj:teﬁ JT CBt;lrJT:ﬁir’ J@égaéfégg Board, Jr, J.
ticle is strongly modified at velocities which approachithe 23 v, L. Beckers, C. P. Lowe, and S. W. de Leeuw, Mol. Sinad, 269
speed of light. Despite this, E(4) implies that the average  (1988.
interaction between particles is independent of this longitu-°J- W. Perram, H. G. Petersen, and S. W. de Leeuw, Mol. Pof(s375
dinal contraction of the electric fjeld. Eit.her this is a conse- %?%ames and P. Hut, Natufleondon) 324 446 (1986.
quence of the full Maxwell equations which has not yet beens|  greengard and V. Rokhlin, J. Comput. Phy8, 325 (1987.
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