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The hydrophobic interaction between objects immersed in water is typically attractive and adds to the well-
known van der Waals interaction. The former supposedly dominates the latter on nanometric distances and
could be of major importance in the assembly of biologic objects. Here we show that the fluctuation-induced
attraction between two objects immersed in a correlated dielectric medium which models water is the sum
of a van der Waals term and a short-range contribution that can be identified as part of the hydrophobic
interaction. In this framework, we calculate analytically the fluid correlation function and the fluctuation-
induced force between small and extended inclusions embedded in water and we characterize the hydrophobic
terms.

I. INTRODUCTION

The earliest direct force measurement between hy-
drophobic surfaces was reported in 1982 by Parshley and
Israelachvili1. They showed that the observed interac-
tions deviate from the expected sum of electrical dou-
ble layer repulsion and van der Waals long-range attrac-
tion and highlighted the importance of a short-range hy-
drophobic attraction. This interaction was reported as
an exponentially decaying force with a decay length of
about 1 nm measurable out to a range of 10 nm. In the
years following this initial study, experimental observa-
tions have found wildly varying ranges and magnitudes
of hydrophobic interactions, including reports of interac-
tion extending over a distance of several micrometers2.
This variety of results is now attributed to the di�culty
of preparation of hydrophobic surfaces. Plates were made
hydrophobic using coating surfactants that rearrange in
charged patches when the surfaces are immersed in liq-
uid. The interaction between these patches generates
long-range forces3,4. Moreover, another long-range at-
traction (> 300 nm) was shown to arise from bridging
nano-bubbles that nucleate on the surfaces if the medium
is not totally degased. Recently, the hydrophobic inter-
action was measured using systems that were designed to
avoid these long-range biases5,6. These experiments re-
port a short-range attraction with an exponential decay
length which value varies from 0.3 to 1 nm depending on
experimental systems.

Objects immersed in water a↵ect the orientation and
the dynamics of the fluid molecules located in the first
hydration layers7, more distant layers keep bulk proper-
ties. In the frame of a continuous field description of wa-
ter, this short-range e↵ect can be modeled by constraints
imposed on the field at object boundaries. Then, the
free energy of the system depends on the distance be-
tween the inclusions generating a fluctuation-induced in-
teraction mediated by the medium8,9. This is known as
the Casimir-like interaction and it has been extensively
studied for correlated media such as critical fluids8,9, liq-

uid crystals10 or membranes11. Within this framework,
hydrophobicity was modeled as the perturbation of the
density fluctuation generated by objects embedded in the
fluid12. Bulk density correlations vanish beyond 1 nm13.
Large hydrophobic objects induce a disruption of water
hydrogen-bond network which generates a soft fluctuat-
ing water interface28 and a partial drying of the object
surface. This creates rare large density fluctuation events
that can lead to the association of two large bodies sep-
arated by a nanometric distance.12,14,15. Density fluc-
tuations are thus a key ingredient of the hydrophobic
interaction. However a description based on the density
cannot give rise to the long range van der Waals attrac-
tion that has an electrostatic origin.
Water as a fluctuating, classical fluid generates a long-

range Keesom (dipole-dipole) interaction that decays
with distance as 1/r6. On molecular scales, the in-
tegrity of the hydrogen-bond network puts significant
constraints on possible orientational correlations of the
water dipoles. These constraints are due to the high en-
ergy cost (⇡ 10 k

b

T per bond) necessary to disrupt these
non-covalent bonds. Orientational correlations have been
studied in ice vertex models. Water is described as a lat-
tice in which vertices and edges represent oxygen atoms
and O-H bounds respectively16. The network in which
each oxygen is involved in two hydrogen bonds is a crit-
ical system. Criticality is avoided by the possibility of
creating Bjerrum defects. The orientational correlations
are an important source of entropy in water, and thus
could be a contribution to the interactions between sur-
faces or inclusions17,18.
Water is thus a dipolar fluid with strong intermolecu-

lar interactions and correlations and as a consequence it
presents a peculiar non-local dielectric response. Com-
puter simulations and experimental data based on neu-
tron di↵raction experiments furnish a consistent picture
of the microscopic dielectric properties of water. The
dielectric response presents in the Fourier space a pro-
nounced maximum whose height and position are well
established19–22. It is possible to model water as a contin-
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uous dielectric medium associated with this susceptibil-
ity by introducing an appropriate Hamiltonian as a func-
tional of a polarization vector23. Within this framework,
the contribution of the hydrophobic interaction coming
from short-range dipole correlations can be characterized.

In this paper, we introduce a continuous vector model
for a polar liquid and we express its free energy as a
quadratic Landau-Ginzburg energy function. We derive
analytically the corresponding two-point correlation ten-
sor and show that it contains both strong short-range
correlations that extend on several nanometers and the
van der Waals long-range tail. In a second part, we calcu-
late the fluctuation-induced force between two point-like
particles. In a third part we determine the fluctuation-
induced interaction between two infinite plates immersed
in a correlated dielectric medium. Our approach gener-
ates a short-range interaction and a long-range van der
Waals attraction. We determine the shape and range of
the first one in both cases and discuss its relative impor-
tance to the hydrophobic interaction that is measured
numerically or experimentally.

II. BULK CORRELATION FUNCTIONS IN A
CORRELATED DIPOLAR FLUID

The coarse-grained free energy of a continuous dielec-
tric medium, in the absence of external electric field, can
be expressed as a function of its polarization P(r),

H[P] =
1

2

Z
d

3

rd

3

r

0
h
P(r)K(r, r0)P(r0)

+
r ·P(r)r ·P(r0)

4⇡|r � r

0|
i
, (1)

where K is a kernel that encodes the short-range in-
teractions between molecules. The second part of the
energy is the long-range dipole-dipole interaction me-
diated by Coulomb’s law. A local kernel K(r, r0) =
�(r � r

0)K
0

I corresponds to a local dielectric medium
with ✏ = 1 +K

�1

0

. We use units with ✏
0

=1.
With such a formulation it is rather simple to im-

plement the dielectric properties of a medium at semi-
microscopic scale. Water is described by a local mean
value of the molecular polarization vector averaged over
a mesoscopic volume of the liquid. This mean polariza-
tion P(r) is a smooth continuous vector field therefore
the free energy of water should allow expansion in pow-
ers of the polarization gradient. A systematic approach
is to use a Landau-Ginsburg expansion of the free en-
ergy for the polarization field. The lower order terms are


l

(r · P2(r)) and 
c

(r^P(r))2. This expansion is not
su�cient to correctly reproduce the behavior of the lon-
gitudinal susceptibility �k, in particular its pronounced
maximum in q�space which was determined by molec-
ular dynamics and experiments20,22. This illustrates an
overresponse of water that can be explained by the struc-
ture of the network formed by the hydrogen bounds. A

high order term ↵(r(r ·P(r)))2 is thus added23. This
gives the following Landau-Ginsburg expansion23,24

H[P] =
1

2

Z
d

3

r

h
KP2(r) + 

l

(r ·P2(r))

+
c

(r^P(r))2 + ↵(r(r ·P(r)))2
i

+
1

2

Z
d

3

r d

3

r

0r ·P(r)r ·P(r0)
4⇡|r � r

0| . (2)

The non local dielectric permitivity of the medium is
equal to ✏

ij

(q) = �

ij

+K

ij

(q)�1. The Fourier space longi-
tudinal and transverse dielectric susceptibility associated
with this Hamiltonian are

�k(q) = 1� 1

✏k(q)
=

1

1 +K + 

l

q

2 + ↵q

4

, (3)

�?(q) = ✏?(q)� 1 =
1

K + 

c

q

2

, (4)

where q denotes the wavevector and K = �

�1 is the zero
wavevector static susceptibility of water. The coe�cients
↵ and 

c

must be positive for stability at large vectors.
The case 

l

< 0 together with ↵ > 0 can qualitatively
reproduce the exceptional finite wave-vector response
known in water. Its maximum �

m

k = 1/(1+K�2
l

/(4↵))

is reached for q = q

0

=
q

�
l

2↵

. The macroscopic value of

dielectric constant, ✏
L

(0) = ✏

c

(0) = 71, fixes the value of
K = 1/70. The other parameter values are fixed to repro-
duce a a wavelength cuto↵ 1/�? equal to 0.5 Å

�1 for the
transverse susceptibility and a maximum �

m

k = 40 for q ⇡
2.6 Å

�1 for the longitudinal susceptibility22. Fig. 1 rep-
resents �k(q) and �?(q) for q0 = 2.6 Å

�1, �m

k = 40 and

�? =0.21 nm 22. The dielectric constant ✏k(q) is linked to
the susceptibility via the relation ✏k(q) = 1/(1 � �k(q)).
The correlation between the dipoles is so strong that
the dielectric constant becomes negative over a range of
wave-vectors19.

The polarization correlation matrix, hP
i

(r)P
j

(0)i =
G
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(r), corresponding to the Hamiltonian Eq. (2) is
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where hP (r)P (0)ik = I

2

(r) is the longitudinal correla-
tion function and hP (r)P (0)i? = (I

1

(r)� I

2

(r))/2 is the
transverse correlation function.

The functions I
1

(r) and I

2
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FIG. 1. Longitudinal and transverse susceptibilities. The
functions �k(q) and �?(q) are given in Eqs. (3,4) and are

plotted for ↵ = 0.021 Å4, l = �0.29 Å2, Kc = 0.065
Å2, K = 1/70. The Hamiltonian parameters are expressed
as functions of (�m

k , q0,�?), ↵ =
�
1 +K � 1/�m

k
�
/q40 , l =

2
�
1/�m

k � (1 +K)
�
/q20 , Kc = K/�2

? and are calculated for

�m
k =40, q0=2.6 Å�1 and �?=0.21 nm.
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with �k =
p
2/q

0

p
1/
p
⇣ � 1, �

o

=
p
2/q

0

p
1/

p
⇣ + 1,

R = �k/�o and ⇣ = ↵q

4

0

/(1 + K) =⇣
1 +K � 1/�m

k
⌘
/(1 + K). Details of calculations

are given in Appendix A.
The longitudinal and transverse correlations are the

sum of a long-ranged dipolar term that decreases in 1/r3

and short-range terms. The correlations can be rewritten
as

hP (r)P (0)ik =
1

2⇡K(K + 1)r3
�
1 + hk(r)

�
(8)

hP (r)P (0)i? =� 1

4⇡K(K + 1)r3
(1 + h?(r)) , (9)

the functions hk(r) and h?(r) containing the short-range
correlations induced by the q-dependence of the sus-
ceptibility. Their expression is given in Appendix A.

The Fig 2.a, 2.b respectively, represents the correlation
functions hP (r)P (0)ik and hP (r)P (0)i?, the short-range
term hk(r) and h?(r) respectively. The hydrophobic
terms hk(r) and h?(r) are the major contribution to the
correlations on the scale of nanometers. We characterize
more precisely their shape and range.
The longitudinal decay length �k and the oscillation

length 2⇡�
o

are functions of �m

k and q

0

and are equal
to �k =0.49 nm and 2⇡�

o

=0.24 nm for the considered
set of values. The length �k increases with �

m

k . A res-
onant susceptibility corresponds to a perfect network of
hydrogen bonds which is critical and associated with an
infinite correlation length. The terms associated with
the transverse susceptibility decay exponentially with a
characteristic length �? which is fixed to �?=0.21 nm.
For a nanometric correlation length (r > �k), the en-
velopes of the oscillating functions hk(r) and h?(r) are
very well approximated by the dominant term fk(r) =

�KR

3

r

2

e

�r/�k
/4�2k, f?(r) = �KR

3

r

2

e

�r/�k
/2�2k. The

functions f?(r) and fk(r) reach their maximum values
f

m

? = KR

3

e

�2 = 3.9, f

m

k = KR

3

e

�2

/2 = 3.0 for

r = 2�k = 1.0 nm. The ranges rpk and r

p

? on which the hy-
drophobic terms dominate the long-range contributions
are defined as fk,?(rp) =1, they are equal to r

p

k = 2.6

nm and r

p

? = 3.1 nm. The sensitivity of these results as
functions of �m

k and q

0

values is given in Appendix C.
An increase of �m

k induces an increase in amplitude and
range of the short-range terms, a decrease in q

0

induces
an increase of their range and has no influence on their
amplitudes.
We see that the pronounced maximum of the longitu-

dinal susceptibility generates short-range terms in polar-
ization correlation functions that dominate the van der
Waals terms over scales of several nanometers. They ex-
tend on a significantly larger distance than the density
correlation that was found to vanish over 1 nm13.

III. INTERACTION BETWEEN POINT-LIKE
PARTICLES

Solutes of small size (< 0.5 nm) such as methane in-
duce minor disruptions of the bulk hydrogen-bound net-
work25. The perturbation on molecular orientation and
dynamics induced by these impurities a↵ect the water
molecules of the first hydration layer but the second and
further layers conserve the bulk-like properties. In the
present approach in which the properties of the fluid are
coarse-grained on few layer of water molecules, small in-
clusions are represented as a point-like variation of the
static susceptibility K, see26.
We consider two microscopic neutral impurities em-

bedded in the fluid at r

1

, r
2

respectively and separated
by a distance r as represented in Fig. 3.
We write the Hamiltonian H

i

of this system as the
Hamiltonian of bulk water given in Eq. (2) in which the
macroscopic susceptibility K is modified in r

1

and r

2

and



4

h  (r)

h  (r)

r (nm)

‹P(r)P(0)›
‹P(r)P(0)›

r (nm)
a. b.1 132 2 3 4

0.05

-0.05

0

0.1 8

-8

-4

4

0

FIG. 2. a. Longitudinal hP (r)P (0)ik and transverse hP (r)P (0)i? correlation functions as functions of r (nm). b. Longitudinal
hk(r) and transverse h?(r) short-range correlation terms as a function of the distance r (nm). These functions are plotted here
for the set of parameters given in Fig. 1.

r

a. b.

Lh

x

y
z

FIG. 3. Interaction of objects immersed in water. a. Interac-
tion of two point-like particles separated by a distance r. b.
Interaction of two macroscopic plates separated by a distance
h.
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The two impurities do not experience any mean-field
interaction since the minimum of Eq. (10) occurs at
P(r) = 0. However, the total free energy of the sys-
tem which takes into account the fluctuations of the field
depends on r = |r

1

� r

2

| generating a Casimir-like inter-
action between the two particles. An abundant literature
reports theoretical studies of inclusion interactions in cor-
related fluids or membranes (see27 for a review) and the
steps of the analytic derivation of this interaction are well

established. The partition function of the system

Z
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is rewritten by performing a Hubbard-Stratonovich
transformation
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where h

1

and h

2

are two auxiliary fields. Then calculat-
ing the Gaussian integrals yields
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in which the above 6 ⇥ 6 matrix, made of four 3 ⇥ 3
blocks, involves the identity tensor I and the Green func-
tion matrix G(r

1

� r

2

) given in Eq. (5). The total
free energy of individual impurities in water is defined
as F

i

(r) = �k

b

T lnZ
i

(r). In the following we will only
consider the interaction between the two particles that
vanishes when r = |r

1

� r

2

| ! 1. It is obtained by
subtracting the free energy of the system in which the
two impurities are too far apart to interact, i. e. for
vanishing G(r) and gives

F
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The Green’s function diverges in r = 0 and one has to
introduce a short-range cuto↵ ⇤ to calculate the interac-
tion free energy, F

int

(r). This takes into account that the
impurities are not punctual but have a spacial expansion.
This cuto↵ ⇤ is thus the radius of the impurity. The di-
electric susceptibility variation K

i

, defined in Eq (10) is
induced by the inclusion and scales as 1/L3. It can be
estimated as the di↵erence between the macroscopic sus-
ceptibility of water K and the macroscopic susceptibil-
ity of the impurity material K

b

divided by the inclusion
volume, i. e. K

i

(⇤) = (K
b

� K)/(4/3⇡⇤3). We ver-
ify that the introduction of this microscopic cuto↵ gives
correct results for macroscopic thermodynamics values
associated with the system. To do so, we calculate the
free energy of two inclusions embedded in water when the
separation distance between them goes to infinity. In this
case, the interaction energy vanishes and F

i

is equal to
twice the inclusion solvation energy. Using Eq. (14), we

obtain the following expression for the solvation energy,
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For two molecules of methane, ( i. e. ⇤ = 2Å and K

b

=
1), we find E

s,i

=3.37 k
b

T ( i. e. 2 kcal.mol�1) which is in
excellent agreement with the tabulated values14. We now
calculate the interaction energy between two methane
molecules. Using the relation ln detM = Tr lnM and

expanding ln M to second order in G(r)( I
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In Eq. (19), we have used the expression of G(r) given
in Eq. (5). This interaction is attractive. We plot the di-
mensionless term F

int

(r)/k
b

T and its van der Waals con-
tribution F

vdW

int

(r) (obtained for hk(r) = 0, h?(r) = 0) in
Fig. 4. As expected, the long-range interaction decays in
1/r6. The short-range contribution is an oscillating term
that exponentially decreases and vanishes on 1.5 nm. It
represents the dominant term of the interaction for sep-
aration distances inferior to 1 nm and its amplitude is a
fraction of k

b

T on this range. The decay length �

point

of the envelope is numerically evaluated to �
point

=0.32
nm ± 0.01 nm. These results are in very good agree-
ment with ones obtained using di↵erent molecular fields
theory of water28,29. As a conclusion of this part, we
can say that our model captures the essential features
for hydrophobic interaction between punctual objects.

IV. INTERACTION BETWEEN MACROSCOPIC
NEUTRAL OBJECTS

In this section, we aim to characterize the short-
range part of the fluctuation-induced interaction between
macroscopic objects. Unlike small molecules that do not
perturb the network of hydrogen bounds in water, a pref-
erential molecular orientation is induced by extended ob-
jects which tend to align the molecule planes with their
surfaces. This feature is due to the tendency for water
molecules to maximize the number of hydrogen bounds

kbT

Fint (r)
kbT

vdW
Fint (r)

r (nm)

FIG. 4. Interaction energy Fint(r)/kbT in kbT units between
two methane molecules immersed in water and separated by
a distance r. The dashed line represents the van der Waals
contribution Fint(r)

vdW /kbT of the interaction energy. The
plots are obtained for Kb = 1 and ⇤ = 2 Å.

under the geometrical constraint of the interface. As a
consequence of this constrained orientation, a non van-
ishing surface electrostatic potential is observed at the
surface of hydrophobic plates. It is generated by the
interaction between water molecule partial charges and
their image partial charges7. Moreover, theoretical mod-
els and molecular dynamics simulations report that water
density is reduced at the surface of extended objects on
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a layer of few Å

7,25.

We consider two plates of lateral size L immersed in the
fluid and localized in z = 0 and z = h (see Fig. 3). The
separation distance h is much smaller than the lateral
extension. The interaction between the plates and the
fluid leads to a mean polarization Pm such that the field
in the medium can be written as this mean polarization
perturbed by fluctuations P = Pm + �P. The orienta-
tional e↵ect of hydrophobic objects on water molecules
plays a role in the two first hydration layers and vanish
for few Å apart from the surface. We will neglect such
mean polarization e↵ects in the following.

In the present coarse-grained approach, the mean field
and consequently the mean field induced interaction van-
ish. The interaction between the two plates is a Casimir-
like interaction induced by the constraints on �P. To cal-
culate this fluctuating interaction we follow8,9. We first
expend the Hamiltonian of a system around the mean
polarization field Pm. We find

H
P

[�P] =
1

2

Z
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3

rd

3

r

0
�P(r)G�1(r � r

0)�P(r0), (20)

where G(r� r

0) is the two-point correlation tensor given
in Eq. (5). The fluctuation-induced interaction between
two plates is obtained by integrating over all the configu-
rations of the vector field �P that satisfy the constraints
imposed by the plates. The fluctuating polarization field
can be decomposed in a longitudinal and a transverse
part as,

�P(r) = r� (r) +r^ �A(r) (21)

where r� (r) is the longitudinal part of the fluctuating
polarization which is linked to the fluctuating part of the
electrostatic potential � 

e

(r) by the relation r� (r) =
� R d

3

r

0
�k(r, r0)r� e

(r), where �k(r, r0) is the longitu-
dinal dielectric susceptibility of water. The fluctuating
transverse part of the polarization is written as a function
of the potential vector r ^A. The interaction between
the fluid and the surface has to be expressed in terms
of boundary conditions on the fluctuating fields. How-
ever, this interaction is di�cult to model since it includes
many e↵ects. We consider metallic boundary conditions
that freeze the fluctuations of the potential  (r) from
which derives the polarization i.e. � (r

↵

(x
↵

)) = 0 where
r

↵

(x
↵

) (↵ = 1, 2) are the coordinates of the plates. The
interaction induced by frozen polarization fluctuations
was also considered and its calculation is given in Ap-
pendix B. Both boundary condition generates a specific
long-range interaction that models either the interaction
between thin dielectric plates in 1/r4 (frozen �P) or the
interaction between thin metallic plates or thick plates
in 1/r2 (frozen � )30.

The free energy of bulk water can be written as the

sum of a longitudinal and a transverse contribution,

H
P

[� , �A] =
1

2

⇣Z
drdr

0
� (r)K

 

(r � r

0)� (r0)

+

Z
drdr

0
�A(r)KA(r � r

0)�A(r0)
⌘

(22)

with

K

�1

 

(r) =
1

(2⇡)3

Z
d

3

q e

iqr

1

q

2

TrG(q).
q ⇥ q

q

2

, (23)

K�1

A (r) =
1

(2⇡)3

Z
d

3

q e

iqr

1

q

2

G(q).(I� q ⇥ q

q

2

). (24)

We freeze the fluctuations of the electrostatic potential
on the plates, in z = 0 and z = h, and do not impose any
condition on the fluctuations ofA. As a consequence, the
free energy of the system depends on h through the first
term of the Hamiltonian given in Eq. (22), the second
term does not contribute to the Casimir-like interaction
between the plates and we will not consider it in the
following. The partition function of the system is given
by

Z
 

[� ] =

Z
D[� ]⇧

↵=1,2

�(� (r
↵

))

⇥e

� �

2

R
d

3

rd

3

r

0
� (r)G

�1

 

(r�r

0
)� (r

0
) (25)

with G

�1

 

(r�r

0) = K

 

(r�r

0) defined in Eq. (23). Using
the integral representation of the � function, we obtain,

Z
 

[� ] =

Z
D[� ]

Z
⇧
↵=1,2

DC

↵

e

i⌃

↵=1,2

R
d

2

x

↵

C

↵

(x)� (r

↵

(x

↵

))

⇥e

� �

2

R
d

3

rd

3

r

0
� (r)G

�1

 

(r�r

0
)� (r

0
) (26)

where C
↵

are auxiliary fields defined on the plates act-
ing as sources coupled to the fluctuating electrostatic
potential. Writing ⌃

↵=1,2

R
d

2

x

↵

C

↵

(x
↵

)� (r
↵

(x
↵

)) =R
d

3

r� (r)J(r), with J(r) = ⌃
↵=1,2

R
d

2

x

↵

C

↵

(x
↵

)�(r �
r

↵

) and calculating all the Gaussian integrals yields

Z
 

[� ] =
(2⇡)N/2

r���G�1

 

(r � r

0)
���

(2⇡)M/2

p|M
 

(r
1

� r

2

)| (27)

where G

 

(r � r

0) = K

�1

 

(r � r

0) is given in Eq. (23), r
1

and r

2

are the coordinates of the plates and M

 

(r
1

� r

2

)
is

M
 

=

✓
G

 

(x� x

0
, y � y

0
, 0) G

 

(x� x

0
, y � y

0
,�h)

G

 

(x� x

0
, y � y

0
, h) G

 

(x� x

0
, y � y

0
, 0)

◆
.

The free energy of the system is defined as F

 

(h) =
�k

b

T lnZ
 

. The interaction energy is obtained by sub-
tracting the energy of the system in which the two plates
do not interact, i.e. for vanishing G

 

(r). This gives

F

int, 

(h)

L

2

k

b

T

=
1

2

Z
dpd✓p

4⇡2

ln

������

1 G

 

(p,✓,h)

G

�1

 

(p,✓,0)

G

 

(p,✓,h)

G

�1

 

(p,✓,0)

1

������
(28)
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where G

 

(z, p) (with p =
q
q

2

x

+ q

2

y

) is equal to

1/2⇡
R1
�1 dq

z

K

�1

 

(q)eiqzz . Its expression is

G

 

(z, p) =
e

�ph

2(K + 1)p
+

e

��(p)h

(�2(p) + �

2(p))
p
1/⇣ � 1

⇥
⇣⇣

�(p)� �(p)
p
1/⇣ � 1

⌘
cos(�(p)h)

+(�(p) + �(p)
p
1/⇣ � 1) sin(�(p)h)

⌘
(29)

with �(p) =

q
q

2

0

�p

2

+

p
p

4�2q

2

0

p

2

+q

4

0

/⇣

2

and �(p) =q
�q

2

0

+p

2

+

p
p

4�2q

2

0

p

2

+q

4

0

/⇣

2

.
The integral over p given in Eq. (28) is performed numer-

ically. The interaction energy E

int, 

L

2

kb

T

(h) is represented
in Fig. 5 in solid line, the dashed line corresponds to
E

vdW

int

L

2

k

b

T

= � ⇣(3)

16⇡h

2

, the pure van der Waals contribution.
As shown in Fig. 5., the long-range interaction resulting
from frozen electrostatic field fluctuations is equal the
van der Waals interaction. An additional short-range
attractive interaction is observed at for h < 1.5 nm, we
identify this attraction as a part of the ’true’ hydrophobic
interaction generated here by the constrained dipole fluc-
tuations. This contribution dominates the van der Walls
interaction on 1 nm with an amplitude of 0.1 nm�2, i.
e. around an order of magnitude smaller than the inter-
action energy extrapolated from measurement at larger
distances6. This short-range term decays exponentially
with a characteristic length �

plate

= 0.17 nm ±0.01 nm
and vanishes on 1.5 nm, these results deviate from the
experimental measurements by about a factor 5.

In conclusion, our model generates an exponentially
decaying short-range interaction that dominates the van
der Walls interaction on small separation distances. This
is in qualitative agreement with the experiments. How-
ever our predictions underestimate the range and the am-
plitude of the interaction by a factor 5 to 10, confirming
that density e↵ects, that we have neglected here, are pre-
ponderant for objects of large size6,29.

V. DISCUSSION

The hydrophobic interaction between macroscopic ob-
jects has been extensively studied experimentally over a
period of 30 years. The recent understanding of the ori-
gin of surprising long-range interactions has allowed one
to refocus on the ’true’ hydrophobic interaction. New
experimental methods redefine it as a short-range attrac-
tion that overpowers van der Waals interaction over few
nanometers. This e↵ect is presumed to be of primary
importance in biology and nanoscale assembly and its
modelization remains a challenge.

Structural and thermodynamics aspects of hydropho-
bic hydration are reasonably well understood14,31, den-
sity functional theories for water have successfully mod-
eled the solvation including a non trivial size-solute de-

L2kbT

Eint,Ψ (h)
L2kbT
vdW

Eint,Ψ (h)

h (nm)

nm
-2

FIG. 5. Interaction
E

int, 

L2k
b

T
(h) between two plates immersed in

water. The dashed line represents the van der Waals contri-

bution
EvdW

int

L2k
b

T
(h) of the interaction. The interaction is plotted

for the same parameter values as in Fig. 1.

pendence15. They are also able to describe rare fluctu-
ation events that could be responsible for hydrophobic
association of two plates separated by few Å by remov-
ing all the water molecules between these plates. An
evaluation of the range of attraction between hydropho-
bic objects is more di�cult with this method because the
long-range van der Waals terms are not explicitly taken
into account.
In this paper, we have described water as a continuous

dielectric medium, characterized by a vectorial order pa-
rameter, the polarization field P and a free energy which
reproduces correctly the remarkable dielectric properties
of the fluid. In the frame of this model, we have char-
acterized the range of the correlations and evaluated the
distance on which short-range terms dominate van der
Waals long-range terms. We have first calculated the two
point-correlation tensor and have shown that the short-
range part of polarization correlations is the dominant
contribution on about 3 nm, i. e. on large distances
when compared to density fluctuations that vanish on
1 nm. We have calculated the interactions between small
and macroscopic objects and evaluated the range and de-
cay of the hydrophobic contribution. We have found that
this interaction extends in both cases on about 1.5 nm.
Whereas the interaction presents pronounced oscillations
for point-like objects, the oscillations are smoothed for
macroscopic objects and the interaction is exponentially
decaying. This qualitative di↵erence is in agreement with
molecular dynamics results which are obtained for mi-
croscopic plates and report oscillating interactions, and
experiments which measure interaction between macro-
scopic plates and mention smooth exponentially decaying
attraction5,12. The crossover between the two regimes is
estimated to be for an impurity size of 1 nm32. This could
be estimated with our model by calculating numerically
interactions between spheres of increasing radius. The
exponential decay length of the interaction is larger for
point-like objects (�

point

=0.32 nm) than for macroscopic
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objects (�
plate

= 0.17 nm).
Whereas our model generates an interaction between

punctual objects that is in very good agreement with
existing results, the interaction between large objects is
significantly underestimated. The small sensitivity of our
results as a function of the shape of the dielectric sus-
ceptibility excludes a deviation due to a miss-estimation
of dielectric properties of water. A description of the
hydrophobic interaction as a fluctuation-induced force
generated by both density and polarization fluctuations
could be envisaged to to better reproduce experimental
observations20.

In conclusion, the model we propose reproduces qual-
itatively recent simulation and experimental results on
hydrophobic forces. It allows analytic calculations for
dipole fluctuation-induced interactions between objects
of simple geometry and the numerical implementation for
systems of more complicated geometries seems possible.
Therefore we believe it could be useful to investigate the
strength of hydrophobic interactions between biological
objects.
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Appendix A: Green function in real space

In this Appendix, we calculate the longitudinal and
transverse correlations of polarization. We characterize
their amplitude and range.

The expression of the two-point correlation tensor in
the Fourier space,

G

ij

(q) =
1

K +K

c

q

2

✓
�

ij

� q

i

q

j

q

2

◆

+
1

1 +K + 

l

q

2 + ↵q

4

q

i

q

j

q

2

, (A1)

is easily deduced from the free energy given in Eq. (2).
The expression of the Green’s function in the real space
is given by

G

ij

(r) =

Z 1

0

q

2

dq

2⇡3

Z
2⇡

0

d✓

Z
⇡

0

d� sin(�)G
ij

(q)eiqr cos(�)

.

(A2)
The tensorial product q

i

q

j

q

2

can be expressed in spherical

coordinates (q, ✓,�),

q ⇥ q

q

2

=

✓
cos(✓) sin

2

(�) cos(✓) sin(✓) sin(�) cos(✓) sin(�) cos(�)

cos(✓) sin(✓) sin(�) sin

2

(✓) sin

2

(�) sin(✓) sin(�) cos(�)

cos(✓) sin(�) cos(�) sin(✓) sin(�) cos(�) cos

2

(�)

◆
.

After integration on ✓, two integrals remain to be calcu-

lated:

I

1

(r) =
1

(2⇡)2

Z
⇡

0

d�

Z 1

0

dqe

iqr cos(�)

⇣ 2

K +K

c

q

2

+
1

↵q

4 + 

l

q

2 + (K + 1)

⌘
q

2 sin(�), (A3)

and

I

2

(r) =
1

(2⇡)2

Z
⇡

0

d�

Z 1

0

dq

1

K +K

c

q

2

e

iqr cos(�)

q

2 sin(�)

+

✓
1

1 +K + 

l

q

2 + ↵q

4

� 1

K +K

c

q

2

◆

⇥ cos( �)eiqr cos(�)

q

2 sin(�) (A4)

=
1

(2⇡)2

Z
⇡

0

d�

Z 1

0

dq

1

K +K

c

q

2

e

iqr cos(�)

q

2 sin(�)

+
d

2

dr

2

1

(2⇡)2

Z
⇡

0

d�

Z 1

0

dq

⇣ 1

1 +K + 

l

q

2 + ↵q

4

� 1

K +K

c

q

2

⌘
e

iqr cos(�) sin(�). (A5)

These integrals are performed using the residue theorem
giving:

I

1

(r) =
e

�r/�?

2⇡K�2?r
+

(1 +R

2)
2

e

�r/�k

8⇡(1 +K)R�2kr
sin(r/�

o

), (A6)

I

2

(r) =� e

�r/�?

2⇡Kr

2

✓
1

�?
+

1

r

◆

� e

�r/�k

4⇡(K + 1)r
cos

✓
r

�

o

◆ 
2

r

2

+
1

r�

o

✓
R+

1

R

◆!

� e

�r/�k

4⇡(K + 1)r
sin

✓
r

�

o

◆ 
1

�

2

o

✓
1

2R3

+
1

R

+
R

2

◆

+
1

r

✓
1

�

o

+
1

�

o

R

2

◆
+

1

r

2

✓
1

R

�R

◆!

+
1

2⇡K(K + 1)r3
. (A7)

with �? =
q

K

c

K

, �k =
p
2

q

0

p
1/

p
⇣�1

, �
o

=
p
2

q

0

p
1/

p
⇣+1

,

R =
�k
�

o

and ⇣ = ↵q

4

0

1+K

= 1

1+K

⇣
1 +K � 1

�

m

k

⌘
.

The Green function can be written as

G

ij

(r) =

0

@
I

1

(r)�I

2

(r)

2

0 0

0 I

1

(r)�I

2

(r)

2

0
0 0 I

2

(r)

1

A
, (A8)

in the intrinsic spherical basis. After a basis change, the
two-point correlation tensor is:

G

ij

(r) =
I

1

(r)� I

2

(r)

2
(�

ij

� r

i

r

j

r

2

) + I

2

(r)
r

i

r

j

r

2

, (A9)
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where hP (r)P (0)ik = I

2

(r) is the longitudinal correlation

and hP (r)P (0)i? = I

1

(r)�I

2

(r)

2

the transverse correlation.
The longitudinal and transverse correlation functions can
be written as:

hP (r)P (0)ik =
1

2K(K + 1)r3
�
1 + hk(r)

�
, (A10)

hP (r)P (0)i? =
�1

4K(K + 1)r3
(1 + h?(r)) , (A11)

where the functions hk(r) and h?(r) contain the short-
range terms. Their expression is:

hk(r) =e

�r/�?(K + 1)r2
✓

1

r�?
+

1

r

2

◆

�e

�r/�k

2
Kr

2

 
cos(

r

�

o

)

✓
2

r

2

+
1

r�

o

✓
R+

1

R

◆◆

+sin(
r

�

o

)

 
1

�

2

o

✓
1

2R3

+
1

R

+
R

2

◆
+

1

r�

o

✓
1 +

1

R

2

◆

+
1

r

2

✓
1

R

+R

◆!!
(A12)

and

h?(r) =e

�r/�?(K + 1)r2
✓

1

�

2

?
+

1

r�?
+

1

r

2

◆

�e

�r/�k

2
Kr

2

 
cos(

r

�

o

)

✓
2

r

2

+
1

r�

o

✓
R+

1

R

◆◆

+sin(
r

�

o

)

 
1

�

2

o

✓
1

R

3

+
2

R

+R

◆
+

1

r�

o

✓
1 +

1

R

2

◆

� 1

r

2

(R� 1

R

)

!!
. (A13)

Appendix B: Fluctuation-induced force between two plates
that freeze polarization fluctuations

In this Appendix, we calculate the fluctuation-induced
force between two plates located in z = 0 and z = h that
impose frozen polarization fluctuations on their bound-
aries. To do so we calculate the h-dependent contribution
of the system’s free energy. The partition function of the
system is written as

Z
P

=

Z
DP⇧

↵=1,2

�(�P(r
↵

))

⇥ e

1

2

R
d

3

rd

3

r

0
�P(r)G�1

(r�r

0
)�P(r

0
)

. (B1)

Using the integral representation of � function, we obtain,

Z
P

=

Z
D�P

Z
⇧
↵=1,2

DC
↵

e

i⌃

↵=1,2

R
d

2

x

↵

C
↵

(x)�P(r

↵

(x

↵

))

+ e

� �

2

R
d

3

rd

3

r

0
�P(r)G�1

(r�r

0
)�P(r

0
)

, (B2)
where C

↵

are vectorial auxiliary fields defined on
the plates acting as sources coupled to the polar-
ization. Writing ⌃

↵=1,2

R
d

2

x

↵

C
↵

(x
↵

)�P(r
↵

(x
↵

)) =R
d

3

r�P(r)J(r), with J(r) = ⌃
↵=1,2

R
d

2

x

↵

C
↵

(x
↵

)�(r �
r

↵

) and performing the Gaussian integrals over �P and
C
↵

we find,

Z
P

=
(2⇡)N/2

p|G�1(r � r

0)|
(2⇡)M/2

p|M
P

(r
1

� r

2

)| , (B3)

where G(r � r

0) is the bulk function given in Eq. (5), r
1

and r

2

are the coordinates of the plates and M

p

(r
1

� r

2

)
is

M
P

=

✓
G(x� x

0
, y � y

0
, 0) G(x� x

0
, y � y

0
,�h)

G(x� x

0
, y � y

0
, h) G(x� x

0
, y � y

0
, 0)

◆
.

(B4)

The free energy F

P

of the system is defined as F
P

(h) =
�k

b

T lnZ
P

. The interaction energy is obtained by sub-
tracting the energy of the system in which the two plates
are too far apart to interact. The interaction energy be-
tween the plates is equal to

E

int,P

(h) =
k

B

T

2

Z
dxdx

0
dydy

0 ln |M
p,int

| . (B5)

with

M

int,P

=

✓
I G(x� x

0
, y � y

0
, h).G�1(x� x

0
, y � y

0
, 0)

G(x� x

0
, y � y

0
,�h).G�1(x� x

0
, y � y

0
, 0) I

◆
. (B6)

This equation can be Fourier-transformed to obtain:

E

int,P

(h) =
L

2

k

B

T

2

Z 1

0

dp

Z
2⇡

0

d✓

1

4⇡2

p ln
���M̃

p,int

��� ,

(B7)

where

M̃

int,P

=

✓
I G̃(p, ✓, h).G̃�1(p, ✓, 0)

G̃(p, ✓,�h).G̃�1(p, ✓, 0) I

◆
,
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with

G̃(p, ✓, z) =
1

2⇡

Z 1

�1
dq

z

G(p, q
z

)eiqzz . (B8)

Using the relation lnDetA = Tr lnA, and after an expan-
sion at the second order in G̃G̃�1, the interaction energy
can be expressed as,

E

int,P

(h)

k

b

T

=
1

2

Z 1

0

dp

Z
2⇡

0

d✓p

1

4⇡2

Tr(G̃�1(p, ✓, 0)G̃(p, ✓, h)

⇥ G̃�1(p, ✓, 0)G̃(p, ✓, h)).
(B9)

The matrix G̃(p, ✓, z) is written as

G̃(p, ✓, z) =

0

@
F

1

(p, z) + F

2

(p, z) cos2(✓) F

2

(p, z) cos(✓) sin(✓) F

3

(p, z) cos(✓)
F

2

(p, z) cos(✓) sin(✓) F

1

(p, z) + F

2

(p, z) sin2(✓) F

3

(p, z) sin(✓)
F

3

(p, z) cos(✓) F

3

(p, z) sin(✓) F

1

(p, z) + F

4

(p, z)

1

A
, (B10)

with

F

1

(p, z) =
e

(�
p

K/Kc+p

2

z)

2K
c

p
K/Kc+ p

2

,
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2h

(p, z) =
1

2(1 +K)

⇣
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�pz
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(�2(p) + �

2(p))
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⇣

� 1

✓
�(p)� �(p)
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⇣

� 1
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cos(�(p)z)

+ (�(p) + �(p)) sin(�(p)z)
⌘
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, (B11)

and F

3

(p, z) = �ip@

z
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2

(p, z) , F
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(p, z) = �@2
z

F

2

(p, z),

where �(p) =

q
q

2

0

�p

2

+

p
p

4�2q

2

0

p

2

+q

4

0

/⇣

2

and �(p) =q
�q

2

0

+p

2

+

p
p

4�2q

2

0

p

2

+q

4

0

/⇣

2

.
After integration over ✓, one finally gets

E

int,P

(h)

k

b

TL

2

=
1

2

Z 1

0

pdp

2⇡

⇣
F

2

1

(p, h)

F

2

1

(p, 0)
+

(F
1

(p, h) + p

2

F

2

(p, h))
2

(F
1

(p, 0) + q

2

F

2

(p, 0))2

+
(F

1

(p, h) + F

4

(p, h))2

(F
1

(p, 0) + F

4

(p, 0))2

+
2pF 2

3

(p, h)

(F
1

(p, 0) + p

2

F

2

(p, 0))(F
1

(p, 0) + F

4

(p, 0))

⌘

The long-range behavior of this interac-
tion energy is dominated by the term

lim
h!1

R1
0

pdp

2⇡

(F

1

(p,h)+F

4

(p,h))

2

(F

1

(p,0)+F

4

(p,0))

2

/ R1
0

dpp

2

e

�ph / 1

h

4

.

It is interesting to note that the long-range behavior
in 1/h4 corresponds to the interaction between two thin
dielectric plates30. The van der Waals interaction be-
tween thin metallic plates decreases in 1/h2. This sit-
uation is not well reproduced by the polarization freez-
ing conditions. Molecular dynamics results mention that
the molecules in the first layer of water in contact with

metallic plates keep an important lability. The 2D ro-
tation in the (x, y) plane is not constrained and water
molecules exchange between first and second layer seems
to be possible33. This dynamics can probably lead to non
vanishing polarization fluctuations.

Appendix C: Sensitivity of characteristic lengths

In this Appendix, we calculate the sensitivity of the
characteristic lengths that we determined in this paper
as a function of the parameters q

0

and �m

k . We assume

�

m

k = 40 and q

0

= 2.6 Å

�1.

In section II, we determined the ranges r

p

k and r

p

? of
the short-range longitudinal and transverse terms and the
values (fm

k , fm

? ) and their position 2 �k of their maxi-
mum. The sensitivity of the given values for a small
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change of q
0

or �m

k are calculated as follow:

0

BBBBBBBBB@

d2�k
2�k
df

m

k
f

m

k
df

m

?
f

m

?
dr

p

k
r

p

k
dr

p

?
r

p

?

1

CCCCCCCCCA

= A

 
dq

0

q

0

d�

m

�

m

!

with the dimensionless matrix

A =

0

BBBBBBBBB@

q

0

2�k
@

q

0

2�k
�

m

k
2�k

@

�

2�k
q

0

f

m

k
@

q

0

f

m

k
�

m

k
f

m

k
@

�

f

m

k
q

0

f

m

?
@

q

0

f

m

?
�

m

k
f

m

k
@

�

f

m

?
q

0

r

p

k
@

q

0

r

p

k
�

m

k
r

p

k
@

�

r

p

k
q

0

r

p

?
@

q

0

r

p

?
�

m

k
r

p

?
@

�

r

p

?

1

CCCCCCCCCA

.

The matrix A determined for q
0

= 2.6 Å

�1 and �m

k = 40
is equal to

A =

0

BBB@

�1.0 0.5
0 1.5
0 1.5

�1.0 1.0
�1.0 0.9

1

CCCA

An increase, a decrease respectively, of �m

k , q

0

respec-
tively, corresponds to an increase of the range of short-
range terms. The sensitivity in q

0

and in �m

k are similar
for r

m

k,?. The sensitivity is higher in q

0

for the posi-
tion of the maximum 2�k. The value of the maximum
f

m

k,? depends only on �

m

k . For the set of parameters

(�m

k = 44, q
0

= 2.34), we obtain (2�k = 1.15 nm, f

m

k =

3.5, fm

? = 3.9, rk = 3.1 nm, r? = 3.7 nm).
We also determine the sensitivity of �

point

, the decay
length of hydrophobic interaction between two point-like
particles. It is given by:

d�

point

�

point

=
⇣

q

0

�

point

@

q0

�

point

�

m

k
�

point

@

�

�

point

⌘ dq

0

q

0

d�

m

k
�

m

k

!

with
⇣

q

0

�

point

@

q0

�

point

�

m

k
�

point

@

�

�

point

⌘
= (�0.5, 0.3).

An increase, a decrease respectively, of �m

k , q

0

respec-
tively, corresponds to an increase the decay length. The
sensitivity is similar in both parameters. For the set of
values (�m

k = 44, q
0

= 2.34), we obtain �
point

=0.35 nm.

To finish, we determine the sensitivity of �
plate

, the
decay of hydrophobic interaction between two plates. It
is given by

d�

plate

�

plate

=
⇣

q
0

�
plate

@q0�plate
�m

k
�
plate

@��plate

⌘ dq
0

q
0

d�m

k
�m

k

!

with
⇣

q

0

�

plate

@

q0

�

plate

�

m

k
�

plate

@

�

�

plate

⌘
= (�1.2, 1.4).

An increase, a decrease respectively, of �m

k , q
0

respec-
tively, corresponds to an increase the decay length. The
sensitivity is similar in both parameters. For the set of
values (�m

k = 44, q
0

= 2.34), we find �
plate

=0.21 nm.
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