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Local Molecular Dynamics with Coulombic Interactions
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We propose a local, O�N� molecular dynamics algorithm for the simulation of charged systems. The
long ranged Coulomb potential is generated by a propagating electric field that obeys modified Maxwell
equations. On coupling the electrodynamic equations to an external thermostat we show that the
algorithm produces an effective Coulomb potential between particles. On annealing the electrodynamic
degrees of freedom the field configuration converges to a solution of the Poisson equation much like the
electronic degrees of freedom approach the ground state in ab initio molecular dynamics.
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Coulomb’s law for the interaction between two charged
particles is generally presented as a static limit of
Maxwell’s equations valid after all transients have de-
cayed to zero [1]. Because of the difference between the
signal propagation speed c of electromagnetic radiation
and excitations in condensed matter, almost all particle-
based numerical simulations of materials employ the
approximation of static, instantaneous interactions �c �
1�. This approach has some disadvantages. Since the
electrostatic potential is the unique solution of Poisson’s
equation, even the slightest motion of particles requires a
global recalculation of the electrostatic potential at every
time step; this calculation can dominate the computa-
tional effort [2] and represents a major bottleneck for
the development of efficient multiprocessor codes.

One might wonder whether more efficient code results
from a formulation that allows one to reduce the propa-
gation speed, but still maintains a sufficiently large sepa-
ration of time scales in a manner familiar from ab initio
molecular dynamics [3]. The ratio of the rms particle
velocity �v to c would play the role of an optimization
parameter much like the ratio of electron to nuclear
masses in quantum chemistry. In order to change c, one
would simulate the evolution of the coupled particle-
electromagnetic system as is routinely done in plasma
physics [4]. Such a treatment has the great advantage of
only requiring local operations, but requires an enormous
reduction of c in order to be efficient. However, with such
a dramatic reduction of c the electric field will not follow
the particle motion adiabatically. In this limit there is no
guarantee that the correct thermodynamic ensemble is
generated. A fundamental question thus arises: Is
Coulomb’s law just a static limit of the Maxwell equa-
tions or is the law more general?

Recent work on Monte Carlo algorithms [5–7] has
shown that the correct thermodynamic potential is found
even if the particles and fields propagate at the same rate:
If one writes that the energy of an electric field E is U �R
E2=2 d3r, then a Gibbs distribution characterized by

interactions in 1=r is generated from the constrained
integral
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where the charge density, 	�r� �
P
iei��r� ri�; the

charge of the ith particle is ei. We work in Heaviside-
Lorentz electromagnetic units where �0 � �0 � 1. The
constraint in the � functions is Gauss’s law. In the electro-
static limit, E � �grad�p, where �p is the solution of
Poisson’s equation with source 	, but in general E �

�grad�p 	 Etr, where Etr is an arbitrary transverse or
rotational vector field. By changing variables and inte-
grating over Etr, one immediately sees [5,6] that the
longitudinal field components result in a Coulombic par-
tition function, while the contribution from the transverse
components merely multiply this partition function by a
constant. Thus Coulomb’s law is valid even in the presence
of a fully equilibrated and dynamic transverse electro-
static field. This result is nontrivial since the retarded
interaction between two charges is not simply 1=r [1].

This Letter implements two molecular dynamics algo-
rithms which sample Eq. (1).We show that our algorithms
generate the correct thermodynamic potential and dis-
cuss the consequences of lowering c for time dependent
correlations. The algorithms involve only local opera-
tions on the field degrees of freedom and the CPU time
per integration step scales linearly with the number of
particles N. The most obvious choice for sampling Eq. (1)
is to directly integrate Maxwell’s equations together with
Newton’s equations for the particles coupled to the elec-
tromagnetic field:

_B � �c curlE; mi _vi � eiE�ri�;

_E � c curlB� J; _ri � vi;
(2)

J denotes the electric current due to the particle motion.
As in the electrostatic limit, we have dropped the Lorentz
force ei�v
B�=c in the equation for _vi [8].

Evolution of the system is described by a map in phase
space. If the Jacobian of this map is unity then there is a
conserved density, just like in Hamiltonian mechanics
where Liouville’s theorem can be applied: Let us integrate
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Eqs. (2) through a time step �t and evaluate the Jacobian
of the transformation @x0i=@xj where xi denotes any one of
the variables in Eqs. (2). Since we have @x0i=@xi � 1, i.e.,
the diagonal elements of this matrix are unity we find that
the Jacobian is 1	O��t�2. Thus in the limit of small time
steps the Jacobian is preserved. This implies that a mea-
sure conserved by the dynamics is

d� �
Y
i;�

dri;�dvi;�
Y
r;�

dEr;�dBr;�; (3)

where the products are over the particles and then all
space. We note that generalized Liouville dynamics have
turned out very useful recently in the construction of new
thermostating methods for particle simulation [9]. Since
the equations of motion conserve the energy Um �P
mv2i =2	

R
d3rfB2=2	 E2=2g we deduce that the par-

tition function for this system is Z �
R
d���Um �

U0� 
 � (constraints) where the � function includes all
the constraints and conservation law inherent in the two
Maxwell equations of Eqs. (2).

A standard hypothesis of ergodicity would lead us to
guess that we now sample Eq. (1). However, the full
Maxwell equations have associated with them many in-
dependent conservation laws in addition to the Gauss
condition [10], most importantly divB � 0. If we simply
integrate the Maxwell equations we have to supplement
the Gauss constraint in Eq. (1) with many other con-
straints in such a way that the analytic formulation of
the partition function becomes intractable. We should
reduce the symmetries and conservation laws inherent
in Maxwell’s equations, leaving just Gauss’s law; we do
this by transforming to a constant temperature ensemble
and coupling the electromagnetic field to thermostats to
improve the ergodicity of the field degrees of freedom.

We modify two of the equations of motion to

_mvi � qiE�ri� � �1vi 	 ~ 1;

_B � �c curlE� �2B	 ~ 2;
(4)

where the damping �j and the noise ~ j are related by the
fluctuation dissipation theorem. The equation for the par-
ticle velocity is entirely conventional in molecular dy-
namics, that for the magnetic field less so. The noise ~ 2 on
the magnetic field degrees of freedom is completely gen-
eral; it does not satisfy div ~ 2 � 0. Because of the cou-
pling of B to the random noise it is ergodic, as is vi.
Introduction of the noise has destroyed the unwanted
constraints arising from Maxwell’s equations. However,
taking the divergence of _E � c curlB� J we see that
Gauss’s law is still valid for the thermalized equations
of motion if the equation of continuity divJ	 _	 � 0
holds, and we start the simulation with an initial condi-
tion consistent with Gauss’s law.

One can check that the distribution P0 � e��Um is a
fixed point of the thermalized equations. Such a demon-
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stration is often taken as being a sufficient criterion for a
thermostat in physics; due to presence of the conservation
laws in Maxwell’s equations we have examined conver-
gence of the dynamics by studying the function [11] H �R
�P�t� � P0


2=P0d� and calculating the dynamics of H
with a Fokker-Planck equation for the full distribution
function P. By requiring that _H � 0 we find that P must
converge to a function of the form P � A�E; ri�P0 where�Z

d3r�c curlB� J� �
@
@E

	
X
i

vi �
@
@ri

�
A � 0: (5)

The condition that this equation is valid for arbitrary B
leads to the conclusion that A is a functional of only
divE. The general solution of Eq. (5), is then a general
functional of divE� 	: A � �A�divE�r� � 	�frig�
.
Choosing divE� 	 � 0 as a conserved initial condition
then leads to the required result P�t� ! P0. With the
weight P0 and the measure d� we integrate over the
Gaussian variables B and vi and reproduce the required
partition function Eq. (1) independent of c.

In our implementation of the algorithm, particles of
mass m move in the continuum. We interpolated the
charges onto the L3=a3 nodes of a cubic mesh using 3rd
order B-splines, distributing the charge of each particle
onto 27 nodes [7]; higher or lower order schemes are
possible if they conserve charge. The same mesh is used
to discretize the field equations, and the electric field E is
associated with the 3L3=a3 links. Groups of 4 links are
grouped into plaquettes, and the magnetic field B lives on
the 3L3=a3 plaquettes [12]. The particles interact in addi-
tion with a shifted Lennard-Jones potential of scale a
truncated at its minimum, rc � 21=6a. This discretization
is equivalent to a standard 7-point discretization of the
Laplacian [13].

In order to integrate the equations of motion (2) of the
coupled field/particle system, we use a standard velocity
Verlet scheme. First we advance the magnetic field B
together with the particle velocities to midpoint. Then,
the values of the B field and the velocities are used to
advance the electric field E and the positions ri. Finally,
the Langevin thermostats Eqs. (4) are applied and the
B-field/velocity moves completed. We have used a stan-

dard time step �t � 0:01', where ' �
��������������
ma2=�

p
is the unit

of time and � � e2=a the unit of energy. The same time
step is used for both the particle and field equations.
The Courant criterion for the stable integration of
Maxwell’s equations is �t < a=

���
3

p
c. For the values of c

used in this Letter this criterion is always satisfied and
never limits �t.

The success of the method relies on implementing
constraint conserving couplings between particles and
fields as well as exact local charge continuity. Motion of
a particle leads to a local (finite) fluctuation of the inter-
polated charge density �	l. From this we construct a
local current Jl such that divJl � ��	l. We decompose
the displacement of a particle �ri into a (time reversible)
170201-2
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FIG. 1. Time for the field integration (�), field-particle cou-
plings (4), and total time (�) in a system of size L � 30a as a
function of N on an single AMD Athlon CPU. Also shown are
results for the same system treated with a Fourier-based
method using a charge interpolation of the same order (filled
symbols, � corresponds to the total reciprocal work).
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FIG. 2. Static structure factor S�q� � hs�q�s��q�i; s�q� �
�1=
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N

p
�
P
iei exp�iriq� of a charged symmetric electrolyte �L �

15a�; three densities n � 0:05a�3, n � 0:1a�3, n � 0:2a�3,
and T � �=43kB using the present algorithm in mode I (�),
c � 1a='; transverse electric field and particles thermostated
to T � �=43kB, �v=c � 0:3 using Eqs. (4) and (6). For �, the
electric field is damped, mode II, c � 32a=', �v=c � 0:01. Also
shown is a corresponding Monte Carlo simulation (4). Solid
lines: Debye theory. Inset: average instantaneous force for a
pair of charges, L � 8a for modes I and II. Solid curve: f �
�dV=dr, where V � �1=43r� r2=6�0L

3 from Ewald sum-
mation [20]. Lattice artifacts removed using dynamic subtrac-
tion, � � 0:9=a.
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sequence of steps f�x=2;�y=2;�z;�y=2;�x=2g [14].
Each substep in a direction � leads to a current in only
those links parallel to � [15]. The field update is then
slaved to the current �E � ��Jl. The force acting on the
particles is found from the principle of virtual work: A
fluctuation of a particle position �� induces a local
charge fluctuation and thus a local current. The force is
just f� � ��Um=�� [16]. This prescription for the force
leads to the usual electric force fel � eihE�ri�i, where
hE�ri�i is a local average of the electric field which
depends on the exact form of the interpolation of the
charge density to the lattice; this is the origin of the
acceleration in Eq. (2).

The use of a lattice to discretize the Maxwell equations
leads to artifacts in the interaction and self-energy of the
particles. These artifacts are removed using dynamic
subtraction [7]. A scalar field that couples to the inter-
polated charges via the energy functional F Y� 
 �R
���r �2 	�2 2�=2� 	 
d3r leads to an effective in-

teraction between particles of the form VY�r� �
�eieje

��r=r, which when added to the direct Coulomb
interaction regularizes the short distance singularity in
1=r. In our molecular dynamics code this field obeys the
equation of motion

1

c2
@2 

@t2
� r2 ��2 	 	� �3

@ 
@t

	 ~ 3: (6)

TheYukawa force fY � 	eihgrad i on the particle comes
from a local average consistent with the virtual work
principle, and the total force reads f � fel 	 fY 	 fLJ.
We correct for the Yukawa potential by adding an extra
analytic Yukawa potential (with opposite sign) to the
truncated Lennard-Jones potential at short distances.

Our algorithm runs in two modes. In mode I, all
auxiliary fields are kept at the same temperature as the
particles, and we generate the correct thermodynamic
interaction independent of �v=c. We also run in ‘‘dynami-
cal simulated annealing mode’’ [3] (mode II), where we
anneal the electric degrees of freedom to zero tempera-
ture by removing the noise on B and using larger values
for �2 and c, while maintaining the finite temperature
thermostat on the particles. In this case, our code is closer
to traditional methods, because the field configuration
converges to the solution of Poisson’s equation when
particle motion stops. This mode is clearly similar in
approach to dynamic methods used in quantum simu-
lations [3] with �v=c a freely variable optimization
parameter.

Our numerical tests of the algorithm begin with a
direct verification of the O�N � scaling in Fig. 1 (open
symbols).While the effort to integrate the auxiliary fields
only depends on the number of grid points, the work
required for the particle-field couplings rises linearly
with N. At the ‘‘working density’’ of a typical biomo-
lecular simulation using a 0.1 nm grid and particle vol-
umes of O�0:01 nm3� [13] (corresponding to N � 3000 in
170201-3
Fig. 1), both parts of the simulation contribute equally to
the total time. Note, in particular, that the field integra-
tion is twice as fast as the reciprocal part of a standard
Fourier-based implementation [17] (filled symbols). The
expense for the particle-field couplings is higher in our
code, but optimizations in the prefactor can be expected.

Next, we performed checks on the correctness of the
method by placing two particles of opposite charges in a
box and measured the instantaneous force. We compare
the results to the short range expansion of the analytic
170201-3
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FIG. 3. Velocity autocorrelation functions for L � 10a, 50
particles, mode I. Intrinsic damping �1 � 0:1'�1, dotted
line: exp��0:1t='�. Solid lines from left to right: correlations
for c � 0:32; 0:35; 0:41; 0:5; 0:7; 1; 3:2; 10a='. Inset: initial de-
cay rate !0 from exponential fits.
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Ewald summation in the inset of Fig. 2 and find excellent
agreement for both modes. We also simulated a globally
neutral electrolyte composed of positive and negative
particles in order to observe the phenomenon of Debye
screening. At high enough temperatures, we expect a
static charge-charge structure factor of the form S�q� �
e2q2=�42 	 q2� where the inverse Debye screening length
42 � ne2=kBT, n is the density of charge carriers. Fig-
ure 2 compares S�q� for several densities with this ex-
pression and also to results measured with our related
Monte Carlo algorithm [7]. Again we find good agree-
ment. As described in [7] we also have studied the disper-
sion law of charge and density fluctuations in a homoge-
neous electrolyte and were able to confirm the fast equili-
bration of density-density and charge-charge correlations.

In Fig. 2, we showed that the algorithm generates a pair
potential equivalent to that of the Ewald summation for
two very different values of �v=c. However, particle dy-
namics are clearly sensitive to c. As a simple illustration,
we show velocity autocorrelations hvi�t�vi�0�i for several
values of c in Fig. 3. For very dilute systems the auto-
correlation is dominated by the damping constant �1 in
the Langevin thermostat, and hv�t�v�0�i � exp���1t�. At
higher densities, this decay is modified by collisions, and
hv�t�v�0�i has a faster decay. The curves in Fig. 3 are in
this density regime and are sensitive to the intrinsic
dynamics of the particles. For c < 1a=', correlations
are modified by the low propagation velocities, but satu-
rate to a common curve for larger values of c.

We have simulated a charged system interacting via
Coulomb forces using an algorithm in which the speed of
light is a free variable. If �v=c is large the dynamics
generate the correct statistical mechanical ensemble for
Coulomb interacting particles, but dynamic correlations
are modified. On increasing c both the statistical me-
chanical and the local dynamical properties are repro-
duced correctly. The structure of our code is very similar
to ‘‘particle in cell’’ plasma codes which are rather easy to
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implement on large multiprocessor computers with lim-
ited interprocessor bandwidth. We therefore expect that
on many processors, our algorithm can be competitive
with other fast electrostatic methods including Fourier
[2], multigrid [18], and fast multipole methods [19]. Our
method also generalizes naturally to situations with spa-
tial dielectric inhomogeneities, which cannot be solved
using Fourier techniques and nonstandard boundary con-
ditions, e.g., irregularly shaped volumes.

We thank Burkhard Dünweg for advice and encourage-
ment in the implementation of this method.
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Princeton, NJ 08544.
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