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The event-chain Monte Carlo (ECMC) method is an irreversible Markov process based on the factorized
Metropolis filter and the concept of lifted Markov chains. Here, ECMC is applied to all-atom models of
multi-particle interactions that include the long-ranged Coulomb potential. We discuss a line-charge model
for the Coulomb potential and demonstrate its equivalence with the standard Coulomb model with tin-foil
boundary conditions. Efficient factorization schemes for the potentials used in all-atom water models are
presented, before we discuss the best choice for lifting schemes for factors of more than three particles. The
factorization and lifting schemes are then applied to simulations of point-charge and charged-dipole Coulomb
gases, as well as to small systems of liquid water. For a locally charge-neutral system in three dimensions, the
algorithmic complexity is O(N logN) in the number N of particles. In ECMC, a Particle–Particle method, it
is achieved without the interpolating mesh required for the efficient implementation of other modern Coulomb
algorithms. An event-driven, cell-veto-based implementation samples the equilibrium Boltzmann distribution
using neither time-step approximations nor spatial cutoffs on the range of the interaction potentials. We
discuss prospects and challenges for ECMC in soft condensed-matter and biological physics.

PACS numbers: 02.50.-r, 02.70.-c, 41.20.Cv

I. INTRODUCTION

A. Irreversible Markov processes

Numerical methods are ubiquitous in the natural sci-
ences, with Markov-chain Monte Carlo1 and molecular
dynamics2 playing central roles. Markov-chain Monte
Carlo applies to any computational science problem that
can be formulated as an (perhaps fictitious) equilibrium-
statistical-physics system and whose solution requires
sampling its probability distribution. As in physical and
chemical systems, equilibrium within the computational
context usually means that all probability flows van-
ish. This requirement is enforced by the detailed-balance
condition, an essential ingredient of most Markov-chain
Monte Carlo methods and notably of the Metropolis al-
gorithm3. Monte Carlo algorithms usually take much
time to approach equilibrium4, and, once in equilibrium,
to generate independent samples. This is, in part, due
to the fact that detailed balance leads to time-reversible
Markov-chain dynamics, which is diffusive and therefore
slow.

In recent years, a new class of irreversible “event-
chain” Monte Carlo (ECMC) algorithms has been pro-
posed5,6. ECMC algorithms violate detailed balance
but satisfy a weaker global-balance condition. Config-
urations at large times sample the equilibrium distribu-
tion, but the asymptotic steady state comes with non-
vanishing probability flows. In particle systems with

periodic boundary conditions, for example, atoms may
continue to move preferentially in certain directions. In
continuous spin systems, likewise, configurations realize
the equilibrium distribution even though spins rotate in
a preferred way7–9. ECMC moves (displacements of par-
ticles, rotations of spins, etc.) are infinitesimal and per-
sistent: An “active” particle moves directly from one
event to the next, that is, it continues to move until
a proposed move is vetoed by a unique “target” par-
ticle, which in turn becomes the active particle. This
passing of the active-particle label is called a lifting10,11

and this concept overcomes the characteristic rejections
of randomly proposed finite moves in the Metropolis algo-
rithm. ECMC algorithms are powerful6,7,9,12: In a one-
dimensional particle system, they were demonstrated to
mix on shorter time scales than Markov chains that sat-
isfy detailed balance13.

In ECMC, the traditional Metropolis acceptance crite-
rion based on the change in potential is replaced by a con-
sensus rule. This is the essence of the factorized Metropo-
lis filter, which applies to translation-invariant systems
with pair-wise interactions between particles6 and, more
generally, to models whose interactions can be split into
sets of independent factors14. The ECMC algorithm does
not compute the total system potential energy. This
makes it very appealing for long-range-interacting sys-
tems, where this computation is costly. For Coulomb
systems, ECMC altogether avoids traditional algorithms
for the electrostatic potential15, the dominant compu-
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tational bottleneck for long-range-interacting models.
Rather, the cell-veto algorithm16 efficiently establishes
consensus on the acceptance or the rejection of a pro-
posed move, even if all particles interact with each other.
This is the starting point for the present work.

Generally, computations in statistical physics fall into
two categories. They either aim at thermodynamic av-
erages (energy, specific heat, spatial correlation func-
tions, etc.) or at dynamic properties (time correlations,
nucleation barriers, coarsening, etc.). In principle, the
computation of thermodynamic averages is the realm
of Markov-chain Monte Carlo, whereas the analysis of
dynamical behavior calls on molecular dynamics, as it
solves Newton’s equations of motion. Specifically, how-
ever, the field of large-scale all-atom computations with
long-ranged interactions is today dominated by molecular
dynamics for both categories. The dominance of molec-
ular dynamics is rooted in two facts: Firstly, traditional
Monte Carlo methods usually update just O(1) particles
at a time, and the acceptation/rejection step then re-
quires the exact computation of the change in potential.
The best currently known algorithm17 for the change in
potential after such a local update in a Coulomb system
is of complexity O(

√
N) so that one Monte Carlo sweep

(a sequential update of all N particles) requires O(N3/2)
computations. In molecular dynamics, in contrast, the
discretized Newton’s equations update all particle posi-
tions simultaneously, and the necessary computation of
the forces on all particles comes at a cost of O(N logN),
much less than for a Monte Carlo sweep. Secondly,
Newtonian dynamics conserves momentum and explores
phase space more efficiently than the local Metropolis
algorithm. This advantage of molecular dynamics over
Monte Carlo is, for example, brought out by the differ-
ent scaling of the velocity auto-correlation functions in
the context of long-time tails18,19.

The time evolution of molecular dynamics has physi-
cal meaning, but from an algorithmic point of view, it
is constrained by the requirement that it must imple-
ment Newton’s law. As a result, there is no additional
freedom to accelerate the exploration of phase space. In
contrast, Monte Carlo dynamics is non-physical and only
constrained by the global-balance condition. A well-
chosen Monte Carlo dynamics can considerably speed
up the sampling of the equilibrium distribution. Those
equilibrium samples may also serve as starting configu-
rations for parallel molecular-dynamics calculations that
give access to high-precision dynamical correlation func-
tions. Furthermore, if more complex out-of-equilibrium
rare-event physical phenomena (such as protein folding)
are of interest, the timescales of long-time features can
be accessed by the inspection of the rare events produced
by parallel simulation on Nproc processors. Similar to the
half-life analysis of radioactive substances composed of
large numbers of atoms, a rare event that takes place on
a time scale τ on a single processor will then take place
on a time scale τ/Nproc on one of the Nproc processors.

In this work, we develop the framework for the applica-

tion of ECMC to classical long-range-interacting all-atom
systems. In particular, we demonstrate efficient ECMC
methods that rigorously sample the canonical ensemble,
without even evaluating the total potential. The factor-
izations that we implement with the cell-veto algorithm
allow us to move a single particle from one event to the
next in a CPU time that is independent of the number
of point charges in a system. For a locally charge-neutral
system, the mean free path (the mean distance between
events) decreases only logarithmically with the number
of point charges in the system. This implies that the
computational effort required to move every particle in a
simulation a constant distance scales as only O(N logN),
with no approximation and without the numerically in-
tensive interpolation mesh used in many modern electro-
static simulations.

We validate our algorithm through explicit compar-
isons with a standard Metropolis algorithm and with
molecular-dynamics simulations, each performed with
Ewald summations. We focus on two conceptual issues.
One is the computation of Coulomb pair-event rates, that
is, essentially, the derivatives of the two-particle Coulomb
potential with respect to the position of the “active” par-
ticle. In the simplest version of ECMC, this corresponds
to the probability with which an active particle will stop
and induce a lifting to a target particle. The other issue
concerns the factorization schemes of the system poten-
tial in which we lump together different interactions that
partially compensate each other so that the ECMC mean
free path between events is much increased. We first ap-
ply our ECMC algorithm to a pair of like Coulomb point
charges and then to systems of charge-neutral dipoles in
a three-dimensional simulation box with periodic bound-
ary conditions. We finally demonstrate the perfect agree-
ment of thermodynamic observables between ECMC and
conventional Monte Carlo and molecular dynamics for
up to 256 water molecules at standard density and tem-
perature. The ECMC algorithm leaves ample room for
improvements. We expect it to be widely applicable to
all-atom simulations of charged systems.

B. All-atom molecular simulations

Of great importance in soft-matter research, biological
physics and related fields, the all-atom approach projects
the full quantum-mechanical many-body system onto the
reduced classical degrees of freedom of the atomic po-
sitions. The projection yields the potential energy as
a function of all the particle positions, and the Monte
Carlo method can then, in principle, be applied directly.
Molecular dynamics also starts from the atomic poten-
tial, as the forces in Newton’s equations are given by its
spatial derivatives. Present-day parametrized empirical
force-field models20,21 further break up the potentials and
make them amenable to practical computations. For ex-
ample, separate terms in the potential typically describe
deviations of chemical bonds from their equilibrium val-
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ues, with individual contributions for stretching, bend-
ing and torsion. Likewise, distinct intermolecular poten-
tials capture longer-ranged features of the interactions;
for example, dispersion forces, hard-core repulsions and
long-ranged charge–charge and dipolar interactions. The
all-atom reduction from quantum mechanics to a classi-
cal interacting system is approximate and not uniquely
defined. Various force-field models are used in a number
of code bases22,23, which are also implemented in other
prominent codes24–26. The parameters in each force-
field model are optimized to reproduce thermodynamic
and structural features over a reduced range of tempera-
tures and pressures. Different potential functions coexist
even for the description of simple molecules such as wa-
ter27. We use in this work an all-atom potential for wa-
ter that features two-body bond stretching, three-body
bending as well as long-ranged Coulomb interactions, and
a Lennard-Jones potential28.

Modern codes generally compute the long-ranged
Coulomb potential through variants of the Ewald algo-
rithm applied to a discretized analogue of the continuous
position space. The Fourier contribution to the potential
is evaluated by first interpolating each point charge to
multiple points on a mesh and then solving the Poisson
equation via fast Fourier transform, which, combined, is
of complexity O(N logN) per computation of the po-
tential energy. Numerous formulations of this algorithm
have been developed starting with the Particle–Particle–
Particle–Mesh method29. More recent generations com-
bine the Particle–Mesh philosophy with the Ewald for-
mula, to create the Particle–Mesh–Ewald method30 to-
gether with many variants31–33 which, together, remain
the workhorse of modern simulation codes. The charge
interpolation onto the mesh generally presents the main
computational workload. These methods use intricate
strategies to maintain a high level of accuracy. Mesh in-
terpolation leads to very large self-energy artifacts which
have to be subtracted with great care in order not to
modify the physical interactions.

Alternative approaches exist for the computation of
the Coulomb potential and the electrostatic forces on par-
ticles. The hierarchical multipole-moment expansion34,
for example, expands the interactions of a particle with
all the other particles in terms of spherical harmonics,
and therefore avoids Fourier transforms and lattice in-
terpolations. However, the expansion converges only
with high orders of the multipole moments so that one
molecular-dynamics time step, although it is of complex-
ity O(N), comes with a prohibitive prefactor. Local al-
gorithms that propagate electric fields rather than solve
the Poisson equation also bypass the fast Fourier trans-
form35–37. This is an advantage in architectures where
the Fourier transform involves large-scale non-local in-
formation transfers. In these algorithms, the complex-
ity of a single-particle update is O(1) but the use of a
background lattice to discretize the electrostatic degrees
of freedom again leads to costly interpolations from the
continuum charges to the grid38,39. In contrast to well-

established methods, ECMC is directly formulated in
continuous space, and its successful implementation only
relies on translational invariance on all length scales. In
essence, ECMC requires no discretization of the simula-
tion box, and the total Coulomb potential and forces may
remain unknown throughout the simulation.

All-atom molecular-dynamics simulations must take
into account a variety of time scales and lengths. In-
deed, the high-precision time integration of intramolecu-
lar spring forces requires a discretization time in the fem-
tosecond range. The physics associated with the much
longer time scales that one wishes to study include den-
sity fluctuations (which relax on the picosecond time
scale), Debye-layer equilibration (nanoseconds), and con-
formation changes (milliseconds). At the same time, the
precise rendering of dielectric and screening properties
requires high-quality computations, and the long-ranged
nature of the interaction calls for large system sizes in
order to overcome finite-size effects. In order to effi-
ciently manage both the stiffness (the presence of many
relevant time scales) and long-ranged potentials, inter-
actions are often broken up, and sophisticated multiple
time-step algorithms are implemented40,41. Use of a ther-
mostat42 is crucial in order to counteract a drift of the
system energy and to connect the potential-energy sur-
face with the system temperature. The ECMC algorithm
considers the same potentials as its competitors, but it
is fundamentally event-driven so that the exact Boltz-
mann distribution is sampled at any given temperature.
This renders the thermostat unnecessary. In our appli-
cation, the triggering of events remains well balanced
between intramolecular, short-range intermolecular and
long-ranged intermolecular Coulomb events.

II. ECMC ALGORITHM

ECMC5,6 is an irreversible continuous-time Markov
process: Its moves are thus infinitesimal. Analogously,
Newton’s differential equations are of course also defined
in continuous time. The molecular-dynamics algorithms
that solve Newton’s equations must be time-discretized
for all systems except for hard spheres2 or for stepwise
constant potentials43,44. In contrast, in ECMC, dis-
cretization is generally avoided through the event-driven
approach. In the present section, we discuss the essen-
tial issues of the algorithm’s setup and implementation
as well as its complexity.

A. Factors, factorized Metropolis filter

In ECMC, the interactions in an N -particle system are
split into a finite or infinite set of factorsM = (IM , TM ) ∈
P({1, . . . , N})×T , where P is the power set of the indices
(comprising all indices, pairs of indices, triplets, etc), and
T is a set of interaction types. We refer to IM as the
index set of the factor and to TM as its type. The total
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potential U , which is a function of all particle positions
{r1, . . . , rN}, is written as a sum over factor potentials
UM :

U({r1, . . . , rN}) =
∑
M∈M

UM ({ri : i ∈ IM}), (1)

where UM only depends on the factor indices IM and
is of type TM . In eq. (1), the set M = {M : UM 6=
0} ⊂ P({1, . . . , N}) × T only contains factors that have
a non-zero contribution for some values of the positions.
In a system with only pair interactions, a non-zero factor
may be ({i, j}, pair). The corresponding factor potential
would then be U({i,j}, pair)(ri, rj), and the total potential
in eq. (1) then becomes U =

∑
i<j U({i,j}, pair)(ri, rj),

which is normally written as U =
∑
i<j Upair(ri, rj).

In this work, we use more general factorizations. The
Lennard-Jones factor, that we write as ({i, j}, LJ), has
a factor potential

U({i,j},LJ)(rij) = kLJ

[(
σ

|rij |

)12

−
(

σ

|rij |

)6
]
, (2)

where rij = rj−ri is the shortest separation vector from
particle i to particle j, possibly corrected for periodic
boundary conditions. The Lennard-Jones factor “LJ” in
eq. (2) may be replaced by two types, namely the type
LJ6 (describing the 1/|rij |6 part of the Lennard-Jones
interaction) and the type LJ12 (describing its 1/|rij |12

part)6. For two indices i and j, this yields two fac-
tors, namely ({i, j}, LJ6) and ({i, j}, LJ12). Likewise,
the bending energy in a water molecule with particles
i, j, k will correspond to a factor index IM = {i, j, k}
and to a factor type given by the specific function chosen
for this interaction. A similar approach was introduced
for modeling neighboring beads in a polymer14. In Sec-
tions IV B and V, we consider factors that lump together
all of the Coulomb interactions between the four parti-
cles comprising two distinct dipoles, and even between
the six particles of two water molecules, respectively.
The factor corresponding to the latter case is given by
({i, j, k, l,m, n}, Coulomb). (For simplicity of notation,
we do not differentiate in this work the Coulomb types
for two, four and six particles.) As mentioned, the set of
factors can be infinite16, even for finite N . As an exam-
ple, in a finite periodic system, one can view the three-
dimensional Coulomb interaction between particles i and
j as a sum of interactions between i and each periodic
copy of j indexed by an image index n ∈ Z3. For the case
of the above two-water-molecule Coulomb interaction, we
would then have M = ({i, j, k, l,m, n}, Coulombn). The
type set T would then contain all of the separate-image
Coulomb interactions:

{Coulombn : n ∈ Z3} ⊆ T , (3)

where the set of Coulomb types may be a proper or an
improper subset of T . We will treat such factor types in
Section III.

Given the potential factorization enforced by eq. (1),
the Boltzmann weight π(c) = exp [−βU(c)] of configura-
tion c = {r1, . . . , rN} reduces to a product over factor
weights πM (cM ) = exp [−βUM (cM )]:

π(c) =
∏
M

πM (cM ) =
∏
M

exp [−βUM (cM )] , (4)

where cM is the factor configuration, that is, the config-
uration c restricted to the indices of factor M . The tra-
ditional Metropolis filter1, which defines the acceptance
probability for a move from configuration c to configura-
tion c′ in the Metropolis algorithm, does not factorize in
a similar fashion:

pMet(c→ c′) = min [1, exp (−β∆U)] , (5)

= min

[
1,
∏
M

exp (−β∆UM )

]
, (6)

where ∆UM = UM (c′M )−UM (cM ) is the factor-potential
difference between factor configurations cM and c′M . The
recent factorized Metropolis filter6 inverts the order of
the product and the minimization and thus casts the ac-
ceptance probability of a move into the same factorized
form as the Boltzmann weight:

pFact(c→ c′) =
∏
M

min [1, exp (−β∆UM )] . (7)

The factorized filter in eq. (7) and the Boltzmann
weight are now written as analogous products. Strictly
speaking, M is a generalized index denoting a factor
(exp (−β∆UM ) or min [1, exp (−β∆UM )]). It is for sim-
plicity that we refer to M as a “factor” rather than a
“generalized index for the Boltzmann factor and the fil-
ter factor”.

The factorized Metropolis filter satisfies the detailed-
balance condition:

π(c)pFact(c→ c′) = π(c′)pFact(c′ → c). (8)

This is evident if there is only a single factor (U = UM in
eq. (1) so that eqs (5) and (7) are identical), because the
Metropolis algorithm itself is well known to satisfy it:

π(c)pMet(c→ c′)︸ ︷︷ ︸
FMet

c→c′

= π(c′)pMet(c′ → c)︸ ︷︷ ︸
FMet

c′→c

. (9)

If there is more than one factor, pFact also satisfies de-
tailed balance because the Boltzmann weight π of eq. (4)
and the factorized Metropolis filter pFact of eq. (7) fac-
torize (that is, break up) in exactly the same way and
eq. (7), on the level of a single factor, is again equivalent
to the Metropolis algorithm.

Applying the Metropolis filter pMet of eq. (5) is equiv-
alent to drawing a Boolean random variable:

XMet(c→ c′) =

{
“True” if ran(0, 1) < pMet(c→ c′)

“False” else,

(10)



5

where “True” means that the move from configuration
c to configuration c′ is accepted. Similarly, the factor-
ized Metropolis filter pFact could be applied by drawing a
single Boolean random variable with pFact replacing pMet

in eq. (10). However, because pFact ≤ pMet, this would
yield a less efficient algorithm. We rather view the factor-
ized Metropolis filter as a conjunction of Boolean random
variables:

XFact(c→ c′) =
∧

M∈M
XM (cM → c′M ). (11)

Now, XFact(c→ c′) is “True” if the independently drawn
factorwise Booleans XM are all “True”:

XM =

{
“True” if ranM (0, 1) < e−β∆UM ,

“False” else,
(12)

where the uniform random variables ranM (0, 1) are mu-
tually independent for all M .

The conjunction of eq. (11) formulates the consensus
principle: In order to be accepted, the move c→ c′ must
be independently accepted by all factors M . For exam-
ple, for a homogeneous N -particle system with pair fac-
tors ({i, j},pair), the move of a single particle k must be
individually accepted by the factors ({k, j},pair) ∀j 6= k.
In other words, the move of particle k must be ac-
cepted by all other particles, each through its individual
Metropolis filter.

For a continuously varying potential, the acceptance
probability of a single factor M has the following in-
finitesimal limit:

min [1, exp (−β∆UM )] = exp
(
−β∆U+

M

)
∆UM→dUM−−−−−−−−→ 1− β dU+

M , (13)

where

x+ = max(0, x) (14)

is the unit ramp function of a real number x. In this
limit, the factorized Metropolis filter becomes

pFact(c→ c′) = 1− β
∑
M

[dUM (cM → c′M )]
+
, (15)

and the total rejection probability for the move becomes
a sum over factors:

1− pFact(c→ c′) = β
∑
M

[dUM (cM → c′M )]
+
. (16)

In ECMC, the infinitesimal limit generally corresponds to
the continuous-time displacement of a particle k at posi-
tion rk = (xk, yk, zk) and it is usually along a coordinate
axis. Supposing that this displacement is in direction êx,
the differential of the factor potential becomes

dUM = q̃M,k dxk, (17)

where

q̃M,k({ri : i ∈ IM}) =
∂UM
∂xk

, (k ∈ IM ), (18)

is the factor derivative with respect to particle k. We
then define the factor event rate with respect to particle
k as

qM,k = β [q̃M,k]
+
, (19)

so that each of the terms dU+
M becomes

β dU+
M = qM,k dxk. (20)

The event rate qM,k yields the probability of an event
being triggered by particle k within factor M . The total
event rate

Qk({r1, . . . , rN}) =
∑

M=(IM ,TM ):k∈IM

qM,k({ri : i ∈ IM}) (21)

with respect to a particle k naturally involves only event
rates for factors that contain k in their index set.

B. Lifting and factorization schemes

The lifting concept10 is central to ECMC. It lends
persistence to the individual Monte Carlo moves and
thereby allows one to take the zero-displacement limit.
It is in this limit that the sampling of factors becomes
unique. We now describe the implementation of a lifted
irreversible Markov chain for the simulation of pair-
interacting particles6, starting with a single pair. We
then generalize14 the method to complex multi-particle
potentials.

In a standard Markov-chain Monte Carlo algorithm,
the rejection of a move of some particle at time s im-
poses that the state c(s+ 1) of the Markov chain at time
s+1 remains unchanged with respect to the state c(s) at
time s. A new move is then proposed. For a local Monte
Carlo algorithm in a particle system, this new move nor-
mally consists in an independently sampled displacement
applied to another randomly chosen particle. In order to
converge towards the correct stationary distribution π,
we recall that the Markov chain must satisfy the global-
balance condition:

Fc =
∑
c′′

Fc′′→c =
∑
c′′

π(c′′)p(c′′ → c) = π(c), (22)

meaning that the total flow Fc into a configuration cmust
equal its Boltzmann weight45. The detailed-balance con-
dition of eq. (8) is only a special solution of eq. (22).
In addition to the global-balance condition, the Markov
chain must also be irreducible and aperiodic. These two
conditions are easily satisfied4; the former guarantees
that any configuration will eventually be visited, while
the latter guarantees that the large-time limit has no
hidden periodicities.
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FIG. 1. Mass flow (from (c′′, 1)) and lifting flow (from (c, 2))
into a lifted configuration (c, 1), corresponding to an accepted
and a rejected particle move, respectively (see eq. (26)). The
total flow should equal the Boltzmann weight π(c) in order to
satisfy the global balance condition of eq. (22).

In ECMC, any physical configuration c (that is, any
set of particle coordinates) is augmented (or “lifted”11)
to include a so-called lifting variable describing which
particle is “active”:

c ≡ {r1, . . . , rN} 7→ (c, a). (23)

In principle, the Boltzmann weight now depends on a,
but, for simplicity, we require π[(c, a)] = π(c)/N and
absorb the normalization factor 1/N into the zero of the
potential and omit it in the following.

In ECMC, furthermore, the particle a (the active par-
ticle) remains active for subsequent moves as long as they
are accepted, and the displacement (in the case that we
will treat) is always the same46. For simplicity of nota-
tion, in the following, the displacement η is applied in
the êx direction for all moves so that the position ra is
updated to ra + ηêx for accepted moves. When a dis-
placement ra → ra + ηêx is rejected by a target particle
t, the state of the lifted Markov chain changes in the
augmented space as

(c, a)→ (c, t), (24)

but the physical configuration c remains unchanged. Lift-
ings thus replace rejections. The global-balance condi-
tion must be written in terms of the augmented config-
urations, and the probability flow F(c,a) into each lifted
configuration (c, a) is then given by the sum of the mass
flow Fmass

(c,a) , that is, flow corresponding to a particle dis-

placement, and the lifting flow F lift
(c,a). This sum must

equal the statistical weight of (c, a) that, as discussed,
equals π(c):

F(c,a) = Fmass
(c,a) + F lift

(c,a) = π(c). (25)

In order to assure irreducibility of the Markov chain, one
may change the direction of motion, most simply by se-
lecting from the set {êx, êy, êz} in a way that does not
need to be random (see the discussion in Section V B).
In ECMC, the process in between two changes of direc-
tion is the eponymous “event chain”. The length ` of an
event chain (the cumulative sum of the displacements),

and the distribution of ` are essential parameters for the
performance of the algorithm.

To demonstrate that ECMC satisfies the global bal-
ance condition, and to study the conditions on the lifting
probabilities, we first consider a system of two particles
{1, 2}. We may suppose, without restriction, that the
active particle is 1 so that, at a given time, the lifted
configuration is (c, 1). This lifted configuration can only
be reached from two other lifted configurations, one that
differs in the configuration variable, and the other in the
lifting variable (see Fig. 1). The lifted configurations and
the corresponding flows are:

(c′′, 1)

(c, 1)

(c, 2)

(c′, 2)

Fmass
(c,1) (mass flow)

F lift
(c,1) (lifting flow)

Fmass
(c′,2)

. (26)

where c = {r1, r2}, c′′ = {r1−ηêx, r2}, and c′ = {r1, r2 +
ηêx}. The mass flow of the lifted algorithm from (c′′, 1) to
(c, 1) equals the total Metropolis flow from the nonlifted
configuration c′′ to c. Because of detailed balance, the
latter equals the (nonlifted) Metropolis flow from c to
c′′, so that:

Fmass
(c,1) = FMet

c′′→c = FMet
c→c′′︸ ︷︷ ︸

see eq. (9)

= π(c)pMet(c→ c′′). (27)

The lifting flow in eq. (26) equals the rejection proba-
bility of the Metropolis move c → c′. Because of trans-
lational invariance (c′′ is a translated version of c′), it
agrees with the Metropolis rejection probability of the
move back from c to c′′:

F lift
(c,1) = π(c)

[
1− pMet(c→ c′)

]
= π(c)

[
1− pMet(c→ c′′)

]
. (28)

Fmass
(c,1) and F lift

(c,1) thus add up to the Boltzmann weight

π(c), and global balance is satisfied. The validity of the
lifted algorithm (which only satisfies global balance, but
breaks detailed balance) hinges on the fact that the un-
derlying Metropolis algorithm satisfies detailed balance
and on the translation invariance of the system.

In the infinitesimal limit, for N particles and a particle-
pair factorized potential, the total probability flow into
a lifted configuration (c, a) has up to N components,
namely N − 1 lifting flows from (c, k) to (c, a) for k 6= a
and one mass move from (c′, a) to (c, a), where c′ is again
the nonlifted configuration with xa replaced by xa − dx.
This corresponds to one lifting flow F lift(k → a) equiv-
alent to that in eq. (26) per target particle k 6= a, and
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FIG. 2. Factors and lifting schemes. (a): A factor M consisting of |IM | = 5 particles, split into non-empty sets I+M (particles
that increase the factor potential) and I−M (see eqs (30) and (31)). (b–e): Lifting schemes. Unit branching γk+→k− = 1 and
γ
k+
1 →k− = 1, γ

k+
2 →k− = 1 for a pair-particle factor ((b)) and a three-partice factor with |I−M | = 1 ((c)), and “ratio” lifting

scheme for |IM | = 3, |I+M | = 1 ((d)) and for |IM | > 3 ((e), see eq. (40)).

a mass flow that is the infinitesimal analogue of that in
eq. (26). Furthermore, a particle-pair potential may be
further factorized according to multiple factor types TM ;
there then exist N−1 lifting flows for each factor M con-
sisting of two particles (|IM | = 2, with IM the index set
of M). Of course, factors that do not contain a in their
index set do not contribute to this flow.

Factors M with more than two particles (|IM | > 2)
can also be handled within the lifting framework14 be-
cause, by translational invariance, the sum over the fac-
tor derivatives with respect to particle k satisfies:∑

k∈IM

∂xk
UM ({ri : i ∈ IM}) = 0. (29)

It is useful to separate the particle indices k ∈ IM of a
factor M into two sets I+

M (with positive factor deriva-

tives) and I−M (negative factor derivatives) such that:

k+ ∈ I+
M ⇔ ∂xk+UM > 0 (30)

k− ∈ I−M ⇔ ∂xk−
UM < 0, (31)

where the factor derivatives satisfy∑
k+∈I+M

∂xk+UM = −
∑

k−∈I−M

∂xk−
UM (32)

(see Fig. 2a).

The mass flow into a lifted configuration (c, k+) with
k+ ∈ I+

M by itself satisfies global balance,

Fmass
(c,k+) = πM (c′′)pMet

M (c′′ → c)

= πM (c)pMet
M (c→ c′′) = πM (c), (33)

so that there can be no additional lifting moves into
(c, k+). This implies that lifting moves are always of the
type (c, k+)→ (c, k−), that is, from an active particle in
I+
M to a target particle in I−M . In contrast, the mass flow

into the configuration (c, k−) is smaller than πM (c):

Fmass
(c,k−) = πM (c′′)pMet

M (c′′ → c)

= πM (c)pMet
M (c→ c′′)

= πM (c)(1 + β∂xk−
UM︸ ︷︷ ︸

<0 (see eq. (31))

dx). (34)

The total lifting flow into (c, k−) comes from all lifted
configurations (c, k+) with k+ ∈ I+

M :

F lift
(c,k−) = πM (c)β

∑
k+∈I+M

∂xk+UMdxγk+→k− , (35)

where γk+→k− is the lifting probability from k+ to k−

once the displacement of k+ has been rejected. In order
for global balance to hold, eqs (34) and (35) must add
up to π(c) for all k− ∈ M−. Therefore, and for the
algorithm to be rejection-free, one needs14:

∀k− ∈ I−M : ∂xk−
UM︸ ︷︷ ︸

<0

+
∑

k+∈I+M

∂xk+UM︸ ︷︷ ︸
>0

γk+→k− = 0, (36)

∀k+ ∈ I+
M :

∑
k−∈I−M

γk+→k− = 1. (37)

Eqs (36) and (37) can be visualized as |I+
M | intervals

of length ∂xk+UM placed on the upper row of a two-row

table, and of |I−M | intervals of length |∂xk−
UM | on the

lower row (see Fig. 2b-e). The total lengths of the two
rows are equal (see eq. (32)), and γk+→k− is the fraction
of the interval k+ on the upper row that lifts into k− on
the lower row. Eq. (36) describes a conservation of the
interval lengths from the upper row to the lower row.

For a pair factor (|IM | = 2), each row has one element,
and the lifting is unique (γ = γk+→k− = 1, see Fig. 2b).
For a three-particle factor (|IM | = 3), if |I+

M | = 2, again

clearly γk+→k− = 1 for each one of the particles k+ ∈ I+
M

(see Fig. 2c). If |I+
M | = 1 and |I−M | = 2, then eq. (36)

yields the unique branching probabilities14 from a to k−1
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and k−2 :

γk+→k−1
= −

∂x
k
−
1

UM

∂xk+UM
∝ |∂x

k
−
1

UM |, (38)

γk+→k−2
= −

∂x
k
−
2

UM

∂x+
k
UM

∝ |∂x
k
−
2

UM |, (39)

which is readily understood from Fig. 2d. Analogously,
for factors with |IM | > 3, the “ratio” lifting corresponds
to cutting up each element in the upper row of the table
into pieces of length proportional to the elements in the
lower row so that

γk+→k− =

∣∣∂xk−
UM
∣∣∑

k−∈I−M

∣∣∂xk−
UM
∣∣ (40)

(see Fig. 2e). For factors with more than three particles
(|IM | > 3), the “ratio” lifting scheme is not unique14.
We will make use of this freedom, in Sections IV and V,
for factors with up to six particles corresponding to the
atoms of two H2O molecules.

C. Event-driven and cell-veto methods

The implementation of ECMC differs notably from
that of the Metropolis algorithm, both because of the
continuous-time nature of the Markov chain, which can
be simulated without approximations using the event-
driven approach47, and because of the consensus prop-
erty, which can be checked in O(1) operations via the
cell-veto method, even for infinite-ranged interactions16.
It is these two features that we explore in the present sec-
tion. The intent is to overcome the limitations of time-
driven ECMC which considers a finite move ηêx of the
active particle:

{r1, . . . , ra, . . . , rN} → {r1, . . . , ra + ηêx, . . . , rN}. (41)

This move is either accepted (and then repeated) or it
leads to a rejection (by a factor M ∈ M containing
particle a), and it gives rise to a lifting (or possibly to
multiple simultaneous liftings). The complexity of time-
driven ECMC is O(|{M : a ∈ IM}|) per displacement
ηêx. Time-driven ECMC has a discretization error, as it
becomes inconsistent if more than one factor simultane-
ously rejects the move in eq. (41). The parameter η must
be small enough for multiple rejections to be rare. Time-
driven ECMC is thus slow, especially for long-ranged in-
teractions, and inexact. It is useful only for testing.

The finite-move ECMC can be implemented as
an event-driven, rather than as a time-driven, algo-
rithm47,48, and because all factors are independent, we
may consider a single one of them. In the above time-
driven ECMC, if the move in eq. (41) (the first move,
m = 1) is accepted, another displacement of magnitude

η is attempted. The lth move is:

{r1, . . . , ra + (l − 1)ηêx, . . . , rN}
→ {r1, . . . , ra + lηêx, . . . , rN}. (42)

After m − 1 acceptances, finally, the mth such move is
rejected (and leads to a lifting). The parameter m is itself
a random variable distributed with a factor-dependent
probability

pM (m) =

m−1∏
l=1

e−β∆U+
M (l)

︸ ︷︷ ︸
accepted; see eq. (13)

move m rejected︷ ︸︸ ︷[
1− e−β∆U+

M (m)
]
, (43)

where ∆U+
M (l) is the change ∆U+

M corresponding to the
lth move in eq. (42). The variable m can be sampled from
eq. (43), and the move ra → ra+ (m− 1)ηêx accepted in
one step. Although the right-hand side of eq. (43), gives a
probability distribution for the displacement of the active
particle a, it only depends on the positive increments of
the factor potential. In the continuum limit η → 0, the
second term on the right-hand side becomes βdU+

M (ra +
ηM êx), that is, the factor event rate of eq. (20), where
ηM is the total displacement before a rejection by factor
M takes place. In this limit, the exponent in the first
term on the right-hand side contains the integral of the
factor event rate for the displacement of ra between 0
and ηM . This gives the probability density47:

pM (U+
M ) = β exp

(
−β U+

M

)
. (44)

In eq. (44), the exponential distribution is sampled by:

β U+
M = − log {ranM (0, 1)} , (45)

where

FIG. 3. Event-driven ECMC47 for a two-particle factor M .
The integral of the factor derivative multiplied with β equals
βUM , whereas the integral of the event rate (in red) must
equal β U+

M , which is sampled from eq. (45). The calculation
of the displacement ηM from the sampled value of β U+

M =
− log ran(0, 1) is indicated by arrows.

β U+
M (ra + ηM êx)︸ ︷︷ ︸

sampled via eq. (45)

=

∫ ηM

0

β [∂xa
UM ({ra + ηêx, rk : k ∈ IM})]+︸ ︷︷ ︸
factor event rate, see eq. (20)

dη. (46)
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In other words, β U+
M is the cumulative event rate of

eq. (20). Eq. (46) is an implicit relation for the limit-
ing displacement ηM at which the rejection takes place
as a function of the sampled value of β U+

M . For a two-
particle factor M = ({a, k},pair), the integration of the
pair event rate in eq. (46) consists in the replacement of
the potential UM by a related potential which is zero at
ra, and where all the negative increments are replaced by
horizontal lines (see Fig. 3).

As mentioned, the factors are independent, and each
concerned factor M provides a value ηM . The next event
takes place at

η = min
M :a∈IM

ηM (47)

and the factor which realizes this minimum (that is, η)

argminM :a∈IM ηM (48)

is the one in which the lifting takes place. For a continu-
ous potential, this factor is uniquely defined, and possible
simultaneous events, due to finite-precision arithmetic,
are too rare to play a role.

The integration of the factor event rate in eq. (46) can
be tedious if it cannot be cast into an explicit analytical
form. This will for example be the case for the Coulomb
potential in the merged-image framework of Section III C.
In addition, the inversion of the factor potential (the com-
putation of ηM in eq. (46)) can be non-trivial. Finally,
this calculation must in principle be redone for all the fac-
tors that contain the active particle a. For a long-ranged
potential, this requires O(N) = O(|{M ∈ M : i ∈ IM}|)
event-rate integrations and inversions per event. The
cell-veto algorithm16, by use of a comparison function,
avoids the integration and the inversion of the event rate,
and it moreover reduces the overall complexity of ECMC
to O(1) per event.

X X X

FIG. 4. Cell-veto algorithm for a two-particle factor M . (a):
Active particle 1 in cell C1 and target particle 2 in cell C2. (b):
The event-rate qM,1(r1, r2) is bounded from above by the cell-
event rate qcellTM

(C1, C2), which can be sampled trivially. A cell
event may either be rejected (at point “A”) or confirmed (at
point “B”) as a particle event (see eq. (50)), while a cell event
taking place outside C1 (at point “C”) means that the active
particle 1 will be advanced towards the cell boundary.

We again first consider a pair factor ({1, 2},pair), with
1 the active particle. The lifted position is (c, 1) (with
c = (r1, r2)) and the displacement is again in direction êx

(as in the situation in Fig. 1). We embed the two particles
in disjoint cells C1 and C2 (see Fig. 4). The potentials that
we consider here are singular only at r1 = r2, so that the
event rate for factor M may be bounded by a constant
“cell-event” rate qcell

TM
(C1, C2):

qM,1(r1, r2) ≤ qcell
TM

(C1, C2) ∀r1 ∈ C1, r2 ∈ C2, (49)

where the right-hand side only depends on the factor
type. This factor-type dependence may take into ac-
count separate cell schemes that could for example corre-
spond to Coulomb interactions between isolated charges,
dipole–dipole interactions, or to the Lennard-Jones po-
tential. (We recall that we do not differentiate the differ-
ent Coulomb types for 2, 4, 6 particles to ease notation.)
In this work, the condition C1 6= C2 is adequate to en-
sure a reasonable value of the cell-event rate. In other
cases16, one must exclude a local set of cells, and treat
local neighbors outside the cell-veto framework. Cell-
event rates are easily tabulated in advance of the ECMC
computation proper.

The probability of the event taking place for an in-
finitesimal displacement dx equals qM,1(r1, r2)dx. Since

qM,1(r1, r2)dx = qcell
TM

(C1, C2)dx︸ ︷︷ ︸
infinitesimal

qM,1(r1, r2)

qcell
TM

(C1, C2)︸ ︷︷ ︸
.1

, (50)

the event can initially be sampled as a “cell event”
with the constant infinitesimal probability qcell

TM
(C1, C2)dx,

before being confirmed with the finite probability
qM,1(r1, r2)/qcell

TM
(C1, C2) ≤ 1. We may suppose that the

cell event takes place at a lifted configuration (c′, 1) with

c′ = (r1 + ηêx, r2) (51)

π(η) = exp
[
−ηqcell

TM
(C1, C2)

]
, (52)

where η can be sampled via

η = − log [ran(0, 1)] /qcell
TM

(C1, C2). (53)

Three outcomes are possible for the sampled values of
η and the subsequent confirmation step. First, the cell
event may correspond to a configuration c′ (in eq. (51))
that is already outside the active-particle cell (c′ 6∈ C1).
In this case, the move is (c, 1) → (c′′, 1), where c′′ is
the configuration intersecting the trajectory of particle
1 with the boundary of C1. Such a cell-boundary event
moves the particle, but does not trigger a lifting. Second,
the cell event may take place at a configuration c′ ∈ C1
but fail to be confirmed as an event (because a uniform
random number ran

{
0, qcell

TM
(C1, C2)

}
> qM,1(r1, r2)) (see

the second term on the right-hand side of eq. (50)). In
this case, the move is (c, 1)→ (c′, 1) and no lifting takes
place. Third, a cell event may take place at a position
c′ ∈ C1 and it is confirmed as an event. This event induces
a lifting (c′, 1) → (c′, 2) (see Fig. 4b). In this whole
process, the factor derivative q̃M,1 is evaluated only when
a cell event is triggered from the exponential distribution
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in eq. (52). The costly integration of the factor event rate
in eq. (46) is thus avoided.

For an N -particle system, the cell-veto algorithm or-
ganizes the search of the next lifting in O(1) operations.
It suffices to choose a regular grid of cells such that, nor-
mally, only a single particle belongs to each cell. (Excep-
tional double-cell occupancies can be handled easily16.)
In this case, the total event rate with respect to factor
type TM for an active particle in Ca is bounded by the
total cell event rate

Qcell
TM

(Ca) =
∑

cells Ct 6=Ca

qcell
TM

(Ca, Ct). (54)

In a translationally invariant system, the total cell
event rate does not depend on the active cell, so that
Qcell
TM

(Ca) ≡ Qcell
TM

, a constant that is computed before
the ECMC simulation starts from the total number of
cells that scales as O(N). The next cell event is ob-
tained from an exponential distribution with parameter
Qcell
TM

(Ca). This event corresponds to cell Ct with proba-

bility ∝ qcell
TM

(Ca, Ct), posing a discrete sampling problem

that can be solved in O(1) by Walker’s algorithm16,49.
The cell-veto algorithm samples the Boltzmann dis-

tribution without performing the event-rate integration
in eq. (46). It requires only O(1) factor-potential eval-
uations per event in an N -particle system. As a con-
sequence, the total potential of eq. (1) is not updated
and the potential remains unknown as the Markov chain
evolves. This is what sets ECMC apart from traditional
simulation approaches.

III. ECMC COULOMB ALGORITHMS

In a three-dimensional simulation box with periodic
boundary conditions, the Coulomb potential is only con-
ditionally convergent for a charge-neutral system, and it
is infinite for a system with a net charge. Finiteness of
the potential can be recovered in both cases if each point
charge is compensated by a background charge distri-
bution. Traditionally, this is chosen as uniform within
the simulation box15. The precise association of each
background charge with its point charge is not unique.
This leads to different electrostatic boundary conditions,
which are linked to the polarization state of the simu-
lation box. Consistency imposes a distinct fluctuation
theorem15 for each choice of boundary condition when
computing macroscopic physical properties such as the
dielectric constant. Alternatively to the uniform compen-
sating background charge, in ECMC, a line-charge model
was introduced16. In this model, the background charge
distribution is one-dimensional and the factor derivatives
are absolutely convergent. The potential for different
variants of the line-charge model can be absolutely or
conditionally convergent.

As discussed in Section II A, ECMC allows for differ-
ent Coulomb factor sets, that may influence the conver-
gence properties of the algorithm, although the steady

state is invariably given by the Boltzmann distribution.
Roughly, there are two inequivalent Coulomb factoriza-
tions16. Firstly, the periodic two-particle problem can be
embedded on a three-dimensional torus and the potential
merged from all the topologically inequivalent minimal
paths between particles (see Fig. 5a). For two particles,
{1, 2}, this “merged-image” system has a single factor
({1, 2}, Coulomb). For N particles, this gives the factor
set

{({i, j}, Coulomb) : i < j ∈ {1, . . . , N}}. (55)

In general, the merged-image factors may comprise more
than two particles, but they do not distinguish between
the different images of a local configuration (for example
an H2O molecule). Secondly, we may picture the three-
dimensional periodic system as an infinite number of pe-
riodic images of the simulation box indexed by an integer
vector n ∈ Z3. For two particles already, this “separate-
image” system has an infinite number of factors and for
N particles, the factor set is

{({i, j}, Coulombn) : i < j ∈ {1, . . . , N},n ∈ Z3}. (56)

More generally, an individual “separate-image” factor
may describe an image of certain particles inside the sim-
ulation box.

FIG. 5. Periodic two-particle Coulomb system. (a): Toroidal
representation corresponding to a merged-image factor. (b):
Line-charge representation. The target point-charge parti-
cle and each of its copies are compensated by line charges
of length 2L. The active particle inside the central simula-
tion box [0, L)3 is not replicated. (c): Compensating volume-
charge representation corresponding to “tin-foil” boundary
conditions.

The aim of this section is threefold. First, we present
the tin-foil and the line-charge Coulomb formulations and
then demonstrate that, although the potentials differ, the
Coulomb factor derivatives (that for pair factors yield the
event rates) are identical. Second, we discuss two effi-
cient algorithms for the merged-image Coulomb deriva-
tives of a pair of particles, one algorithm from the tin-
foil perspective and the other summing up line-charge
derivatives. Third, we set up an ECMC simulation for
two particles in a periodic three-dimensional simulation
box in order to validate that the merged-image and the
separate-image factor sets indeed show indistinguishable
equilibrium properties. We then discuss possible appli-
cations for both factorizations.
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A. Tin-foil electrostatics within ECMC

The traditional treatment of electrostatic interactions
with periodic boundary conditions is based15 on a large
spherical aggregate of images of the three-dimensional
cubic simulation box. The polarization state of the sim-
ulation box is expressed through electrostatic boundary
conditions. With “tin-foil” boundary conditions, the po-
tential of N particles i ∈ {1, . . . , N} of charge ci (in units
where the Coulomb potential between two point charges
in free space is Uij = cicj/|rij |), is15:

UC({r1, . . . , rN}, {c1, . . . , cN})

=
1

2

N∑
i=1

ciψ(ri) + Uself(α), (57)

with the electrostatic potential ψ:

ψ(ri) =

N∑
j 6=i=1

cj

[∑
n∈Z3

erfc(α|rij + nL|)
|rij + nL|

+
4π

L3

∑
q 6=(0,0,0)

e−q
2/(4α2)

q2
cos (q · rij)

 , (58)

where the Fourier-space sum is over q = 2πm/L with
m ∈ Z3. The self-energy contribution Uself(α) is indepen-
dent of the particle positions, and drops out of our consid-
erations, which are only concerned with derivatives of the
potential. The left-hand side of eq. (57) is independent of
the convergence factor α > 0, which however influences
the speed of evaluation of eq. (58). Direct evaluation of
the sums for N point charges leads to an optimal choice
α ∼ N1/6/L, and a scaling in operations O(N3/2). The
Particle–Mesh Ewald method uses an interpolating mesh
to approximate the Fourier sum, leading to O(N logN)
operations to evaluate the potential. In merged-image
ECMC we only use eq. (58) for N = 2 with α = O(1/L),
and evaluate the derivative of the Coulomb potential to
machine precision with O(1) effort.

We continue, as in Section II B, with a two-particle
factor ({1, 2}, Coulomb). The tin-foil factor derivative is
given by:

q̃({1,2},Coulomb),1(r12, {c1, c2})
= q̃Real(r12) + q̃Four.(r12), (59)

with the real-space derivative q̃real

q̃real(r12) =c1c2
∑
n∈Z3

r12 + nxL

|r12 + nL|2
[

erfc(α|r12 + nL|)
|r12 + nL|

+
2αe−α

2|r12+nL|2

π1/2

]
, (60)

and the Fourier-space derivative q̃Four.

q̃Four.(r12) =c1c2
4π

L3

∑
q6=0

qx
e−q

2/(4α2)

q2
sin (q · r12) . (61)

For two particles and, more generally, for pair factors in
an N -particle system, the merged-image Coulomb pair-
event rate, from eq. (59), is given by:

q({1,2},Coulomb),1(r12, {c1, c2})
= β

[
q̃({1,2},Coulomb),1(r12, {c1, c2})

]+
. (62)

In Sections IV and V, we will consider dipole–dipole fac-
tors with an index set comprising the four or six par-
ticles of two molecules and the “Coulomb” type corre-
sponding to all the Coulomb interactions between the
two molecules. The factor potential in this case is the
sum over Coulomb pairs within the factor, and the factor
derivatives needed in eq. (36) are the sum of a finite num-
ber of pairwise Coulomb derivatives as in eq. (59). The
evaluation of the dipole–dipole factor derivatives remains
of complexity O(1) because the number of elements in
each factor remains finite as N →∞. In ECMC, only a
single factor has to be evaluated precisely for each move
(see Section II C) whereas in traditional MCMC or MD
computations the Coulomb potential in eq. (57) or its
derivatives are computed for all N particles.

B. Line-charge model

In a large periodically reproduced aggregate of the
simulation box, the sum over the Coulomb derivatives
between a charged active particle and multiple target
images (without neutralizing backgrounds) is ill-defined.
However, the compensating uniform volume charge is not
the only option to regularize the sum, as the line-charge
model16 and its variants provide alternatives to tin-foil
electrostatics. Here, straight lines of charges are associ-
ated with each copy of the target particle, and aligned
with its direction of motion (in our example êx, see
Fig. 5b). Although the merged-image line-charge poten-
tial, in its simplest version, is itself not absolutely conver-
gent, its factor derivatives are unequivocally defined and
equivalent to those obtained with tin-foil boundary con-
ditions. By itself, the line charge neutralizes the charge
of the target particle, and (because it is centered) also
creates an object with zero dipole moment. Previous
work16 used line charges of length L. Here, we consider
lengths pL with integer p (see Fig. 5b). The line charges
are replicated over a cubic lattice indexed by the lattice
vector n. Lines of different images meet (see Fig. 5b).
The Coulomb potential of the line-charge model natu-
rally differs from the one of the tin-foil model because
the background charge distributions are manifestly dif-
ferent. However, the merged-image Coulomb derivative
of the line-charge model, relevant to ECMC, is identical
to the tin-foil expression.

Explicitly, the contribution to the Coulomb derivative
from an image n (with n = (0, 0, 0) the original simula-
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tion box) is

q̃({1,2},Coulombn),1(r12) = c1c2

{
r12 + nxL

|r12 + nL|3 +

1

pL

[
1

|r12 + L (n + pêx) /2| −
1

|r12 + L (n− pêx) /2|

]}
(63)

The line charge generates an electrostatic potential at
large separations, r = Ln, which varies with a quadrupo-
lar form. Thus, in any given direction the Coulomb
derivative decays as 1/|r|4. For this reason, the sum over
the images of the Coulomb derivatives of eq. (63) con-
verges absolutely. The merged-image Coulomb deriva-
tive, in the line-charge formulation, is thus

tin-foil expression, eq. (59)︷ ︸︸ ︷
q̃({1,2},Coulomb),1(r12, {c1, c2})

=
∑
n

q̃({1,2},Coulombn),1(r12)︸ ︷︷ ︸
sum over line charges, eq. (63)

. (64)

To show this, we first consider the target particle 2 in the
simulation box and all its images to be surrounded by a
cube of neutralizing charge of volume L3 centered on the
particle 2 and its images. This volume-charge model (see
Fig. 5c) is closely connected to the the line-charge model
(see Fig. 5b). Point charge and associated volume charge
have vanishing charge, dipole and quadrupole moments
(whereas the line-charge model, in its simplest form, has
a finite quadrupole moment). We now compare spherical
(radius R� L) and cubic aggregates (of side 2R) of tar-
get images, and study the electrostatic potential within
the central simulation box. In this process, the active
particle is not replicated, and it remains within the sim-
ulation box. Due to the vanishing quadrupole moment
of the volume charges, the difference in the electrostatic
potential on the particle 1 in the spherical and cubic ag-
gregates decreases at least as fast as 1/R2. However the
electrostatic potential in the center of the spherical ag-
gregate corresponds to a zero-polarization state which is
identical to the tin-foil expression of eq. (58).

We now find explicit integral expression for the
Coulomb derivative of an aggregate of line charges and
volume charges and show that the difference is zero in the
limit of a large assembly. We again consider the interac-
tion between an active particle and the cubic aggregate
of the (2K + 1)

3
copies of the target particle (the cen-

tral simulation box and its images). (The active particle
is placed inside the simulation box.) The Coulomb po-
tential between the active particle and a single target
particle is

U12 = 4πc1

∫ ∞
−∞

d3q

(2π)
3 e

iq·r12 ρ2(q)

|q|2 , (65)

where ρ2(q) is the structure factor of the target particle
and the background. We now sum over the images, sep-
arated by a multiple of the simulation box size L along

each axis. This requires evaluating the sum

DK(qx) =

K∑
l=−K

eiqxlL =
sin [qxL(K + 1/2)]

sin(qxL/2)
, (66)

and analogously for qy and qz. With the product

D̃K(q) = DK(qx)DK(qy)DK(qz), (67)

this gives the potential of the active particle in the ag-
gregate of the target particle and its images:

UK = 4πc1

∫ ∞
−∞

d3q

(2π)
3 D̃K(q) eiq·r12

ρ2(q)

|q|2 . (68)

Eq. (66) is the Dirichlet kernel which converges, in a weak
sense, to a sum of δ-functions in the limit of large K:

DK(qx) −−−−→
K→∞

2π

L

∞∑
m=−∞

δ

(
qx −m

2π

L

)
, (69)

and similarly for qy and qz. The width of the central
peak of DK scales as 1/K for large K. Integrals over
sufficiently well-behaved objects become summations in
the limit of large K:∫

d3q

(2π)
3 D̃K(q)f(q)→ 1

L3

∑
q=2πm/L

f(q). (70)

For the volume-charge model, the structure factor is

ρ2(q) = c2

(
1− sinc

qxL

2
sinc

qyL

2
sinc

qzL

2

)
, (71)

where the first term on the right-hand side describes the
point charge and the product of cardinal sine functions,
sinc(qx) = sin(qx)/qx, etc., the uniform background vol-
ume charge.

From eqs (68) and (71), the potential of a finite cubic
array of images of the particle 2, with active particle 1,
is

Uvolume
K = c1c2

∫
d3q

2π2
D̃K(q)

eiq·r12

|q|2

×
(

1− sinc
qxL

2
sinc

qyL

2
sinc

qzL

2

)
. (72)

For line charges of length pL, we find

U line
K = c1c2

∫
d3q

2π2
D̃K(q)

eiq·r12

|q|2
(

1− sinc
pqxL

2

)
. (73)

The volume-charge model is equivalent to the tin-foil
Coulomb potential. The line-charge model, whose poten-
tial is not absolutely convergent, is nevertheless equiva-
lent for ECMC because, as we will see, the integrals in
eqs (72) and (73) yield uniquely defined and equivalent
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FIG. 6. Comparison of the sum of the separate-image event rates
∑

n β
[
q̃({1,2},Coulombn),1(r12)

]+
(upper row) and the merged-

image event rate β
[
q̃({1,2},Coulomb),1(r12)

]+
(lower row). In all panels r12 = (x12, y12, z12) with (a): z12 = 0.1, (b): z12 = 0.2,

(c): z12 = 0.3, and (d): z12 = 0.4. L = 1 and βc1c2 = 1 throughout.

Coulomb derivatives for large K. The difference between
the two is given by:

∆UK = (U line
K − Uvolume

K ) = c1c2

∫
d3q

2π2
D̃K(q)

eiq·r12

|q|2

×
(

sinc
qxL

2
sinc

qyL

2
sinc

qzL

2
− sinc

pqxL

2

)
The Dirichlet kernels imply that the integral in this equa-
tion is dominated by contributions near q = 2πm/L.
However, the function sinc(qiL/2) also has zeros at these
same points (except when qi = 0, where the sinc function
is equal to one). For large K, the potential differences is
thus dominated by a sum over qy, qz, with qx = 0. This
implies that the potential on the active particle equals (to
within a constant) the tin-foil potential for motion par-
allel to the line-charges, but the difference of potentials
is corrugated in the perpendicular y − z plane. This is a
consequence of the fusion of multiple aligned line charges
into a single uniform line when p is integer (see Fig. 5b).

We examine the derivative of ∆UK to show that the
Coulomb derivatives converge to the same value:

∂x1
∆UK =

∫
d3q

2π2
D̃K(q)

qx sin(q · r12)

|q|2

×
(

sinc
qxL

2
sinc

qyL

2
sinc

qzL

2
− sinc

pqxL

2

)
, (74)

which suppresses the contributions which remained for
the calculation of the potential, due to the factor
qx sin(qxx) near qx = 0.

Finally, we consider explicitly the possible divergence
at |q| = 0 in eq. (74), due to the presence of the term
1/|q|2. We expand all the trigonometric functions in the
integrand, ∆IK , to find

∆IK −−−→
q→0

const× q2
x

[
(p2 − 1)q2

x − q2
y − q2

z

]
|q|2 D̃K(q).

Even this contribution is thus driven to zero for large K.
We conclude that in a periodic three-dimensional system,
the line-charge model becomes equivalent to the volume-
charge model, and therefore to tin-foil electrostatics. The
line charges must lie parallel to the direction of motion
but can of course be switched at will. In contrast, the
volume-charge model gives the tin-foil Coulomb deriva-
tives in all directions.

C. Algorithms for Coulomb derivatives

The merged-image Coulomb derivatives are best com-
puted from the tin-foil expressions of eq. (62). To accel-
erate the evaluation, we reduce the Fourier-space compo-
nent of eq. (61) to a sum over non-negative components
(mx,my,mz):

q̃f (r12) = Axyz sin(λx12) cos(λy12) cos(λz12), (75)

where λx12 = 2πmxx12/L, and similarly in y and z and
where

Axyz =
16c1c2mx

L2|m|22δmy,0+δmz,0
exp

(
−π

2|m|2
α2L2

)
(76)

is a position-independent tensor that can be computed
before the simulation starts. In eq. (75), repeated in-
dices (x, y, z) are summed over non-negative integers
(mx,my,mz).

The merged-image Coulomb derivatives can also be
computed from the sum of the line-charge derivatives (see
the right-hand side of eq. (64)). Because of the symmetry
of the line charges, the quadrupolar contribution to the
derivative is an odd function of x, so that forward and
backward terms cancel, and that the sum converges as
1/K2 for large K. The convergence may be accelerated
using Richardson extrapolation50 (see Fig. 7). Denoting
the finite line-charge sum over the range n ∈ [−K,K]3
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factor derivative and the sum over line charges for a given
value of r12 (see eq. (64)) as a function of the cutoff K. The
8-fold iterated Richardson extrapolation for the line-charge
expression agrees with the tin-foil expression to within 10−12

for K ≈ 20.

as SK and assuming that:

SK = S∞ +
A

Kp
, (77)

one may eliminate A as:

S′K+1 =
(K + 1)

p
SK+1 −KpSK

(K + 1)
p −Kp

. (78)

The sequence (S′K+1−S∞) then decays as 1/Kp+1. The
transformation of eq. (78) can be iterated, each time gain-
ing one power in the asymptotic behavior of the sequence.
The merged-image line-charge derivatives converge to the
tin-foil expression of eq. (59), confirming that the two al-
gorithms compute the same object and that individual
factors in the line-charge model may be used to simulate
tin-foil potentials.

As in the line-charge model, one may sum up the
associated point charges and their compensating vol-
ume charges explicitly, rather than proceeding through
Fourier transformation. However, the analytic formulas
are difficult to work with. A further possibility consists
in compensating each point charge with more than one
line charge. Remarkably, four line charges arranged on
a square of side L/

√
12 in the y − z plane, cancel dipole

and quadrupole moments in the multipole expansion and
lead to an absolutely converging sum for the electrostatic
potential. One may also construct more elaborate sheets
and volumes of screening charges to cancel higher orders
in the multipole expansion. All of these screening ob-
jects presented here regularize the sum of the pair deriva-
tives over images and allow for separate-image factor sets
(analogous to eq. (56), see Section III D). Although the

sequence SK decays faster, the Coulomb event rate is not
reduced by these different objects.

D. Separate-image ECMC

As we have seen, all the Coulomb interactions in a fi-
nite system with periodic boundary conditions can be
image-merged into a single Coulomb type that sums over
all the inequivalent minimal paths between two points
on a torus, and that correspond to images in the rolled-
out representation of periodic boundary conditions. For
two particles 1 and 2, this is expressed through a sin-
gle factor M = ({1, 2}, Coulomb). The corresponding
factor derivatives can then be computed with the tradi-
tional tin-foil expression (eq. (59)) or within the line-
charge framework (eq. (64)). The choice of one over
the other is a matter of efficiency only (the algorith-
mic complexity being the same). Each of the formu-
lations suggest other choices for the interaction types.
In the line-charge formulation, the choice of an infinite
set of types {Coulombn : n ∈ Z3} suggests itself. For
two particles 1 and 2, the set of separate-image fac-
tors is {({1, 2}, Coulombn) : n ∈ Z3}. Within ECMC,
these images are statistically independent but only one of
them must be computed precisely for each event. This is
because, as in Section II, we can use a variant of the
cell-veto algorithm (supplemented with an asymptotic
bounding function16), in order to sample the relevant
image index n and to then compute the corresponding
factor derivative of Mn.

Separate-image Coulomb factors generally come with
larger pair event rates, as the contributions from dif-
ferent images do not compensate (see Fig. 6). On the
other hand, evaluating a separate-image Coulomb deriva-
tive (as in eq. (63)) to machine precision requires just a
few operations, many fewer than what is required for its
merged-image counterpart. Details of the separate-image
Coulomb factors can influence the efficiency of the algo-
rithm. As an example, the terminal point of the line
charge is a singular point of eq. (63) and should not ap-
proach another point charge in the system. This moti-
vates our choice of length 2L (or multiples thereof), as
the terminal point of one line charge then coincides with
the position of an image of the original particle. For the
Coulomb potential, the nonphysical line-charge singular-
ity, confounded with the singularity of the point charge,
no longer disrupts the ECMC dynamics.

The dynamic behavior of the different factor sets for
the Coulomb problem have not yet been explored in de-
tail. As a first step, for a system of two like Coulomb
charges, merged-image and separate-image ECMC was
validated against the regular tin-foil Metropolis algo-
rithm (see Fig. 8). All three methods clearly sample the
Boltzmann distribution in the asymptotic steady state.
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IV. DIPOLE–DIPOLE FACTORS

FIG. 9. Model of two-particle dipoles. (a): Particle–particle
factor associating two point charges that belong to different
dipoles. (b): “dipole–dipole” factor comprising four Coulomb
interactions.

In ECMC, one may tailor the factor sets to the prob-
lems at hand. In electrostatic systems made up of lo-
cal dipoles, specific “dipole–dipole” Coulomb factors may
thus contain all the atoms distributed over two molecules
that can be far apart from each other. These factors yield
much smaller event rates than “particle–particle” pair
factors. In addition, a special “inside-first” lifting scheme
can direct most of the lifting flow from the active particle
to a target particle situated on the same molecule. Even
for a non-local factor made up of two distant dipoles, the
lifting flow will thus mostly be between an active particle
and a target particle on the same molecule (the probabil-
ity of an intramolecular lifting grows like logN , whereas
all the intermolecular liftings remain constant). We ex-
pect such a local lifting scheme for extended factors to
show interesting dynamic properties. In the present sec-
tion, we explore dipole–dipole factors in a simple model
of charge-neutral two-particle molecules before employ-
ing them, in Section V, to a model of liquid water. We
expect dipole–dipole factors and their variants to have

useful applications in ECMC.
Concretely, for a simple model of two-particle dipoles

in a three-dimensional periodic simulation box, the
dipole–dipole factor for the particles {1, 2, 3, 4} is given
by:

({1, 2, 3, 4}, Coulomb) , (79)

(see Fig. 9b), where the corresponding Coulomb factor
potential is:

U({1,2,3,4},Coulomb)(r1, . . . , r4)

=

2∑
i=1

4∑
j=3

UC(rij , {ci, cj}). (80)

The factor of eq. (79) thus comprises the four Coulomb
potentials between these particles, using the Coulomb
potential of eq. (57). The model excludes, as is usual28,
Coulomb interactions within a dipole. For the same four
particles, one may also use the “particle–particle” factors

{({1, 3}, Coulomb) , ({1, 4}, Coulomb)

({2, 3}, Coulomb) , ({2, 4}, Coulomb)}, (81)

with the “particle–particle” factor potential:

U({i,j},Coulomb)(rij , {ci, cj}) = UC(rij , {ci, cj}) (82)

(see Fig. 9a). We suppose that the particle 1 is active.
The dipole–dipole event rate

β
[
q̃({1,2,3,4},Coulomb),1

]+
(83)

then allows the interactions UC(r13) and UC(r14) to com-
pensate each other (and to give the event rate corre-
sponding to a point charge interacting with a dipole),
while the particle–particle event rate

β
[
q̃({1,3},Coulomb),1

]+
+ β

[
q̃({1,4},Coulomb),1

]+
(84)

remains much larger (corresponding to a point charge
separately interacting with two isolated point charges),
because the unit-ramp functions are both non-negative
(see eq. (14)) and one of them is usually zero.

A. Event-rate scaling for Coulomb factors

We now consider a homogeneous system of dipoles of
size |d| ∼ d small compared to the simulation box (see
Fig. 10). For concreteness, we suppose that particle 1 is
the active particle. The event rate, whose scaling with
system size we compute in the present section, is the
result of the interaction between the particle 1 and the
distant dimer (in Fig. 9 made up of particles 3 and 4). As
there is no Coulomb interaction between particles on the
same dipole, the position of particle 2 (the dipole partner
of particle 1) does not come into play for the event rate.
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We will see in Section IV B, that this is no longer true for
the lifting rates, which are influenced both by the distant
dimer and by the local dimer of particle 1, that is, by the
position of particle 2.

The electrostatic potential at a distance r from a point
charge ck, within the merged-image (tin-foil) formulation
in a box of side L, is given by the scaling form:

ψL(r) =
ck
|r|fE(r/L), (85)

which generalizes Coulomb’s law valid in free space. The
function fE(x), is smooth and remains O(1) for all x ∈
[−1/2, 1/2]

3
. For separations such that |r|/L � 1 the

potential given by eq. (85) has the expansion51:

ψ(r) = ck

(
1

|r| +
const

L
+

2π|r|2
3L3

+ . . .

)
. (86)

The nth-order derivatives of fE(r/L) are also smooth and
have an amplitude which scale as L−n. The Coulomb
derivative between an active particle and a particle k,
separated by a vector r ∈ [−L/2, L/2]

3
, also has the scal-

ing form:

βq̃({1,k},Coulomb),1 =
lB
|r|2 f

1
E(r/L). (87)

Here, we have introduced the characteristic Bjerrum
length lB = |e2|β, with e the elementary charge, the dis-
tance at which the Coulomb interaction equals the ther-
mal energy and used f1

E as a new scaling function, which
again remainsO(1). An explicit form for eq. (87) at small
separations can be found from eq. (86). For a constant
number density ρ of particles within the simulation cell,
the mean total Coulomb event rate per particle, 〈Qp–p〉,
is given by the integral:

〈Qp–p〉 =
∑
k 6=1

〈
q({1,k},Coulomb)

〉
(88)

=

∫
[−L/2,L/2]3

lBρ

|r|2 f
1
E(r/L) d3r

=lBρL

∫
[−1/2,1/2]3

1

x2
f1
E(x) d3x ∼ lBρL. (89)

This mean total event rate thus diverges as O(L). The
inverse of 〈Qp–p〉 sets the scale for the mean-free path
due to charge–charge interactions, and it is of length
scale O(1/L). The result agrees with the naive free-
space argument16 based on the bare 1/|r| Coulomb in-
teraction. At constant density, the divergence of eq. (89)
in L ∼ N1/3 implies that the active and target particles
are often widely separated from each other. With pair
factors, one thus expects a complexity of O(N4/3) for an
O(1) displacement of all particles in the system.

The scaling form of the potential can also be used to
determine the event rate for dipole–dipole factors (as in
Fig. 9b), the interaction of point charges with dipoles,
or the interaction of pairs of well-separated dipoles. The

potential at a distance r from a dipole in the periodic box
is found from eq. (85) by applying the operator (−d ·∇),
with d the dipole moment. Using again |d| ∼ d, this
implies that the event rate of the dipole–dipole factor,
resulting from the interaction of the active particle 1 with
the dipole at a distance r corresponds to a particle–dipole
Coulomb interaction. The dipole–dipole event rate, for
two dipoles separated by a vector r ∈ [−L/2, L/2]

3
is

given by:

βq̃({1,2,3,4},Coulomb),1 ∼
dlB
|r|3 f

1
E(r/L), (90)

where r denotes the vector from the active particle to the
dipole. Eq. (90) implies that ECMC with dipole–dipole
factors has a much lower mean total Coulomb event rate
〈QCoulomb〉:

〈QCoulomb〉 =

∫
[−L/2,L/2]3

lBρd

|r|3 f
2
E(r/L) d3r

= lBρd

∫
[−1/2,1/2]3

1

|x|3 f
2
E(x) d3x, (91)

where f2
E is another scaling function. The second integral

in eq. (91) is weakly divergent near the origin (which
simply means that in ECMC very nearby dipoles have
to be treated individually). Excluding a region of radius
O(d/L), the mean total Coulomb event rate using dipole–
dipole factors is

〈QCoulomb〉 ∼ lBρd log (L/d) . (92)

This much reduced total event rate, obtained by limit-
ing the contributions from large distances, is our main
motivation for using dipole–dipole factors.

The scaling obtained in eqs (90) and (92) is indepen-
dent of the specific definition of the dipole model. It
only relies on the use of dipole–dipole factors connect-
ing two charge-neutral molecules that may be far apart
(see Section V, where the dipoles are realized by H2O
molecules). The scaling is also insensitive to the intro-
duction of screening charge distributions, and it holds
both for the merged-image and for the separate-image
factor sets. Adapting this factorization framework to
systems composed of molecules that behave as approx-
imate higher-order multipoles would further improve the
scaling.

B. Dipole–dipole lifting schemes

We now consider lifting schemes for dipole–dipole fac-
tors, and for concreteness, we consider a four-particle sys-
tem of particles {1, 2}, forming a charge-neutral dipole
d12 and particles {3, 4}, forming an analogous dipole d34.
In this two-dipole system, particle 1, for example, not
only interacts with a charge-neutral dipole d34, but is
itself inside such a dipole d12. Although the Coulomb
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FIG. 10. Lifting schemes for a dipole–dipole factor. (a): Dipole–dipole factor with four Coulomb interactions. It is assumed
that ∂x1UM > 0, ∂x4UM > 0, and ∂x2UM < 0, ∂x3UM < 0. (b): “ratio” lifting, (c): “inside-first” lifting (d): “outside-first”
lifting.

lifting rate is oblivious to the position of 2 (as there is
no Coulomb interaction between particles 1 and 2), par-
ticle 2 is part of the dipole–dipole factor, and its position
influences the relative lifting rates.

We obtain the derivatives with respect to particles 1
and 2 for the factor M = ({1, 2, 3, 4}, Coulomb) as fol-
lows:

βq̃M,1 =lB

[
a
|d34|
|r|3 +O

( |d34|2
|r|4

)
+O

( |d34|
L3

)]
, (93)

βq̃M,2 =lB

[
−a |d34|
|r|3 +O

( |d34|2
|r|4

)
+O

(|d34|
L3

)]
. (94)

The dominant terms in these two equations are equal in
magnitude yet opposite in sign, reflecting that particles
1 and 2 interact with the same distant dipole d34, are
of opposite sign, and close to each other (on the dipole
d12). For the factor derivatives with respect to particles
3 and 4, we find:

βq̃M,3 =lB

[
ã
|d12|
|r|3 +O

( |d12|2
|r|4

)
+O

( |d12|
L3

)]
, (95)

βq̃M,4 =lB

[
−ã |d12|
|r|3 +O

( |d12|2
|r|4

)
+O

(|d12|
L3

)]
. (96)

(For ease of notation, we used here eq. (86) for small
|r|/L rather than the full scaling form.)

The coefficient a (and analogously for ã) reflects the
orientation of d34 with respect to the distance vector be-
tween the two dipoles (see Fig. 10). Remarkably, the fac-
tor derivatives of M with respect to the particles within
each dipole (q̃M,1 + q̃M,2 and q̃M,2 + q̃M,4) cancel at order
1/|r|3 and leave a remainder of 1/|r|4. This dipole–dipole
compensation to order 1/|r|3 of the factor derivatives is
a general feature for pairs of local dipoles (that can be
composed of more than two atoms) inside a factor, and
occurs in the same manner with the full scaling functions
in the merged-image potential.

We recall from eq. (29) that the four factor derivatives
exactly sum up to zero. As illustrated in Section II B
(see Fig. 2), the lifting scheme corresponds to arranging
the indices k+ ∈ I+

M on the upper row of a two-row table

and the indices k− ∈ I−M on the lower row. In a factor

Lifting scheme qintra qinter 〈Qintra〉 〈Qinter〉 Lifting
particle 0 1/|r|2 0 L inter-dipole
ratio 1/|r|3 1/|r|3 logL logL inter+intra
outside-first 1/|r|3 1/|r|3 log L log L inter+intra
inside-first 1/|r|3 1/|r|4 log L const intra-dipole

TABLE I. Coulomb lifting rates for two dipoles separated by
a distance |r|/L � 1, together with full integrated rate in
simulation box of size L3: One particle–particle and three
dipole–dipole schemes (“ratio”, “outside-first” and “inside-
first”). qintra: lifting rate to the non-active particle within
the active dipole. qinter: lifting rate to the triggering dipole.
〈Qintra〉 and 〈Qinter〉 denote the mean total event rates (using
the full scaling form, as in Section IV A), integrated over the
simulation box.

with large separation |r|, each row contains one element
corresponding to each of the two dipoles (see Fig. 10).

The “ratio” lifting scheme is as described in Sec-
tion II B. All elements fall off as O(1/|r|3) (see eq. (90)),
and both rows contain elements representing each dipole.
From eqs (94) and (96), this leads to comparable propor-
tions of intra- and inter-molecular liftings. Both rates
fall off at the same rate, but their coefficients are differ-
ent reflecting the orientations of the dipoles. The total
inter- and intra-dipole lifting rates both scale as logL
(see Fig. 10b and Table I).

In the “inside-first” lifting scheme, the elements cor-
responding to each dipole are aligned with each other.
The two match to order ∼ 1/|r|3. The mismatch in bar
length is O(1/|r|4) in eqs (93) and (94). In the full scal-
ing picture, the difference in length of the elements can
be computed analogously. Coulomb liftings thus occur
mostly within a dipole, and long-ranged inter-dipole lift-
ings remain bounded in number for large system sizes
(see Fig. 10c and Table I).

Finally, the “outside-first” lifting scheme consists in
vertically aligning elements corresponding to different
dipoles. Aligned elements are of length ∼ |a| and ∼ |ã|,
so that intra- and inter-dipole lifting rates again both
fall off as O(1/|r|3). The situation is analogous to the
one for the “ratio” lifting, and the “outside-first” scheme
remains strongly non-local (see Fig. 10d and Table I).

In contrast to the above dipole–dipole factors, the
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“particle–particle” factor, as argued in eqs (87) and (89),
produces events which occur at the scale of the simula-
tion box at a rate which decreases as only 1/|r|2, leading
to a total event rate increasing linearly with L. The lift-
ing flow is between one dipole and the other, and the
intra-dipole lifting rate is zero (see Table I).

C. Validation of factors and liftings

The dipole–dipole factors and their different lifting
schemes can be checked for consistency for two charge-
neutral dipoles with a short-ranged vibrational intra-
dipole potential, a repulsive potential between oppositely
charged particles (needed to keep dipoles apart from each
other) as well as intermolecular Coulomb interactions.
With particles numbered as in Fig. 9, the model corre-
sponds to a factor set

{({1, 2}, bond) , ({3, 4}, bond) , ({1, 4}, rep) ,

({2, 3}, rep) , ({1, 2, 3, 4}, Coulomb)}, (97)

with the harmonic bond factor potential,

U({i,j}, bond)(rij) =
1

2
kb (|rij | − r0)

2
, (98)

with kb > 0, a short-range repulsive potential

U({i,j}, rep)(rij) =
1

2
k2

(
r0

|rij |

)6

, (99)

with k2 > 0, and a scalar separation r0, in addition to
the dipole–dipole Coulomb factor potential of eq. (80).

The dipole–dipole Coulomb factor differs from the
particle–particle Coulomb factors in the set:

{({1, 2}, bond) , ({3, 4}, bond) , ({1, 4}, rep) ,

({2, 3}, rep) , ({1, 3}, Coulomb) , ({1, 4}, Coulomb)

({2, 3}, Coulomb) , ({2, 4}, Coulomb)}, (100)

where the factor potentials corresponding to bond vibra-
tions and the repulsion between unlike charges are as
in eqs (98) and (99) and the Coulomb factor potentials
are those of eq. (82). In addition, since |IM | = 2 for
each particle-factorized factor M , we have no freedom in
choosing a lifting scheme (see Section IV B).

The “ratio”, “inside-first” and “outside-first” lifting
schemes for the dipole–dipole factor are easily imple-
mented and compared to the particle–particle lifting
scheme. By construction, they yield identical thermo-
dynamic correlations (see Fig. 11). Although the event
rates are fixed by the decomposition of the total poten-
tial into factors, the different lifting schemes may differ
in their dynamical behavior.

V. LIQUID WATER AND DIPOLE–DIPOLE FACTORS

To explore ECMC in a realistic context, we imple-
ment in this section the SPC/Fw liquid-water model28.
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FIG. 11. Cumulative histograms of the distances |r13| (like
charges, see Fig. 10a) and |r14| (opposite charges, see Fig. 10a)
for the particle–particle factor set of eq. (100), and also for
the factor set of eq. (97) using dipole–dipole Coulomb factors,
using the three lifting schemes of Fig. 10b-d. Also separate-
image dipole–dipole factors with inside-first lifting. Periodic
cubic simulation box with L = 1, ci = ±1 point charges,
β = 1, kb = 400, k2 = 1 and r0 = 0.1.

This model combines the long-ranged Coulomb poten-
tial with hydrogen–oxygen bond-length vibrations, a flex-
ible hydrogen–oxygen–hydrogen angle, and a specific
oxygen–oxygen interaction of the Lennard-Jones type.
The SPC/Fw model is closely related to one used in
molecular-dynamics simulations of solvated peptides41.

Naturally, each water molecule is charge-neutral and
dipolar, so that the dipole–dipole factorization of Sec-
tion IV applies. This realizes a mean free path for a sin-
gle particle as ∼ 1/ logN in the thermodynamic limit.
(An earlier ECMC Coulomb algorithm16 had obtained a
mean-free path of as ∼ 1/N1/3.)

A. Factors in the SPC/Fw water model

To simulate liquid water with the SPC/Fw potential,
we use the following type set:

{bond, bending, LJ, Coulomb}. (101)

As an example, the factor set for two water molecules,
containing particles {1, 2, 3} and {4, 5, 6}, respectively,
(and with 2 and 5 being the oxygens, see Fig. 12a) is:

{({1, 2}, bond) , ({2, 3}, bond) ,

({4, 5}, bond) , ({5, 6}, bond) , ({2, 5}, LJ) ,

({1, 2, 3}, bending) , ({4, 5, 6}, bending) ,

({1, . . . , 6}, Coulomb)}. (102)

This factor set (see Fig. 12b) trivially generalizes to more
than two H2O molecules.

In eq. (102), the “bond” factor potential of
eq. (98) describes oxygen–hydrogen bond vibrations
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FIG. 12. SPC/Fw water model and ECMC factors. (a): Two H2O molecules, with particles {1, 2, 3} and {4, 5, 6}, respectively
(2 and 5 being the oxygens). Each of the molecules has a finite dipole moment. (b): “bond”, “bending”, “LJ” and Coulomb
factors implementing the SPC/Fw model. Factors contain between two and six particles.

with the equilibrium bond distance r0 = 1.012 Å and
kb = 1059.162 kcal mol−1 rad−2, that correspond to the
SPC/Fw parameters. The “bending” factor potential
describes the fluctuations in the bond angle within each
H2O molecule:

U({i,j,k}, bending)(ri, rj , rk) =
1

2
ka
(
φ{i,j,k} − φ0

)2
,

where φ{1,2,3} and φ{4,5,6} denote the internal angle be-
tween the two legs of each H2O molecule (see Fig. 12).
We adopt the SPC/Fw parameters: φ0 = 113.24◦ and

ka = 75.90 kcal mol−1 Å
−2

. The specific Lennard-Jones
interaction between oxygen atoms corresponds to the
“LJ” factor potential

U({2,5},LJ)(r25) = kLJ

[(
σ

|r25|

)12

−
(

σ

|r25|

)6
]
, (103)

where kLJ = 0.62 kcal mol−1 and σ = 3.165 Å are pre-
scribed in the SPC/Fw model. The Lennard-Jones in-
teraction is truncated beyond 9.0 Å. Finally, the dipole–
dipole “Coulomb” factor potential, in direct generaliza-
tion of eq. (80), is given by:

U({1,...,6},Coulomb)(r1, . . . , r6)

=

3∑
i=1

6∑
j=4

UC(rij , {ci, cj}). (104)

Here, the Coulomb potential of eq. (57) is used with the
SPC/Fw parameters c1 = c3 = c4 = c6 = 0.41e and
c2 = c5 = −0.82e (with e the elementary charge).

The type set of eq. (101) is by no means unique. We
could also break up the Lennard-Jones interaction into
two types, corresponding to the two components of the
Lennard-Jones potential (as discussed in Section II A).
Also, instead of the merged-image Coulomb type we
could adopt any of the variants of the separate-image
type, resulting in a type set:

{ bond, bending, LJ, Coulombn : n ∈ Z3}.

Finally, it is possible to break up the “bond” and
“bending” factors into NH2O − 1 equal terms in order
to construct a unique dipole–dipole factor for each pair
of H2O molecules in such a way that the type set only
contains a single element. All these choices are correct,
but they may differ in the ease of implementation and in
the speed with which they approach equilibrium.

B. Intrinsic rotations

Our version of ECMC is formulated in terms of dis-
placements that, for a given event chain, are along one of
the directions {êx, êy, êz}. Each individual event chain
can strain the system, but is unable to rotate it, as the
coordinates perpendicular to the direction of motion re-
main unchanged. The flexible SPC/Fw H2O molecule
may itself get strained in a single event chain. Apply-
ing strain subsequently in different directions is known
to be equivalent to a rotation on all levels, and in par-
ticular on the level of a single molecule. This guarantees
that the algorithm is irreducible, and can attain all of
configuration space.

The rotation that is induced through subsequent event
chains in the three directions can be illustrated in an
ECMC simulation of a single H2O molecule, using only
the intramolecular factor types in eq. (101). The rota-
tional dynamics of such a single molecule is easily tracked
through the equilibrium autocorrelation function of the
dipole moment d = r21 + r23 (see Fig. 12), given by

A(s) = 〈d(s′) · d(s′ + s)〉 ∼ exp (−s/λ) for s→∞,

where the variables s and s + s′ denote the ECMC dis-
placement (proportional to the time of the continuous
Markov process). A(s) decays exponentially at large s
with a rate that gives the autocorrelation length λ of
molecular orientation.

At temperature 300 K, the cumulative chain length it
takes to rotate the molecule around itself is about one to
two orders of magnitude larger than the H2O molecule
itself (see Fig. 13). In the limit of large chain lengths `,
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the autocorrelation length of the dipole moment is pro-
portional to `. This simply means that lengthening an
already long chain does not add to the internal strain of
the water molecule, as a local equilibrium is reached.
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FIG. 13. Autocorrelation length λ for the dipole moment in
ECMC of a single H2O molecule (fixed chain length `) for the
cyclic sequence of event-chain directions (êx, êy, êz, êx, . . . )
and for their random resampling.

The sequence of chain directions need not be random:
The switching of directions merely renders the Markov
chain irreducible, whereas global balance is satisfied for
any infinitesimal move (without the return move neces-
sary for detailed balance). As a deterministic sequence
êxêyêzêxêy . . . avoids repetitions, we find it to decorre-
late the dipole moment faster than a uniform random
sampling of chain directions (see Fig. 13). The rotations
of molecules are thus generated as a byproduct of the
switching of event-chain directions. In practical appli-
cations, it remains to be seen whether the rotations of
molecular ensembles decay particularly slowly. In this
case only, the ECMC algorithm will need to be modified
in order to explicitly take into account rotations.

C. ECMC for liquid water

The SPC/Fw potential is adapted for liquid water at
standard temperature 300 K and density 1 g/cm3. An
ECMC simulation at these conditions is easily set up
with factors (including the dipole–dipole Coulomb fac-
tor) as in eq. (102) generalized for NH2O > 2. The “ra-
tio”, “outside-first”, and “inside-first” lifting schemes are
taken over from the dipole case discussed in Section IV.
However, the dipole is now constructed from three parti-
cles. For a far distant pair of H2O molecules, the factor
derivatives with respect to the hydrogen positions are
usually of the same sign, and of opposite sign to that
of the oxygen. In the notations of Fig. 12 and using
M = ({1, . . . , 6}, Coulomb), we thus have that to order

1/r3:

∂x1
UM ∼ ∂x3

UM ∼ −
1

2
∂x2

UM . (105)

This can again be used in the inside-first lifting scheme
to keep most of the lifting flow inside the molecule of the
active particle. Care must be exercised in these lifting
schemes to arrange the particles in a fixed order that is
independent of which particle is active (it is incorrect to
place the active particle systematically on the left-most
position on the upper row of the table in Fig. 10).

For long simulation times, the ECMC algorithm ex-
actly samples the Boltzmann distribution of this model,
and thermodynamic observables can be compared with
Metropolis Monte Carlo using the Ewald summation for
the Coulomb potential. This can be verified for the
oxygen–oxygen distances that agree to very high pre-
cision, demonstrating that the irreversible ECMC con-
verges towards the same steady state as reversible Monte
Carlo algorithms (see Fig. 14). To make sure that equi-
librium is reached, the initial configurations where chosen
randomly in a very dilute system and slowly compressed
towards the target density.
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FIG. 14. Cumulative histogram of the oxygen–oxygen separa-
tion |rOO| for 32 H2O molecules at standard density and tem-
perature via conventional reversible Monte Carlo and ECMC
using the factor set of eq. (102) with inside-first lifting scheme.
The random choice of directions was used with a fixed value
of ` = 0.5Å.

In the liquid-water simulation for NH2O > 2, the fac-
tors M = (IM , TM ) belong to four different types (that is,
TM ∈ T and |T | = 4), into which the ensemble-averaged
total event rate with respect to particle k (see eq. (21))
can be split:

〈Qk({r1, . . . , rN})〉
=
∑
M∈M

〈qM,k({ri : i ∈ IM})〉 =
∑
T∈T
〈QT 〉 . (106)

〈QCoulomb〉 agrees with the definition in Section III (see
eq. (91)). The three local factor types naturally give
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constant scaling of their associated mean event rates
〈Qbond〉, 〈QLJ〉, and 〈Qbending〉 with system size, whereas
〈QCoulomb〉 clearly features logNH2O scaling with the
number of H2O molecules (see Fig. 15). The logarith-
mic scaling of the total Coulomb event rate validates the
prediction of eq. (92). The total event rate increases by

5 Å
−1

when NH2O doubles.
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FIG. 15. Ensemble-averaged total “Coulomb”, “bond”, “LJ”,
and “bending” event rates as a function of the number of
H2O molecules. The Coulomb event rate scales logarithmi-
cally. Event rates depend on the choice of factors but are
independent of the lifting scheme.

Finally we study the lifting flows for the
Couloequ:FactorPotenialWaterBondmb dipole–dipole
factors under the “ratio”, “inside-first”, and “outside-
first” schemes (see Section IV B). As discussed in
Section IV A, the event rates are independent of the
lifting schemes for a given factor set. However, the
probability distributions of the distance |r| between
the active and the target particles are different (see
Fig. 16). First, the peak at the oxygen-hydrogen bond
length corresponding to a lifting within the molecule
increases logarithmically with system size. Second, with
increasing system size the distribution of event distances
develops a power-law tail. In both the “ratio” and the
“outside-first” lifting schemes, the tail of the probability
distribution decreases as |r|−1. The “inside-first” scheme
decays as |r|−2. These results, corresponding to the
evolution of qinter in |r|−3 and |r|−4 in Table I.

Remarkably, the “inside-first” lifting scheme induces
mostly local lifting flows, even for Coulomb factors that
associate H2O molecules that are far distant from one
another. Most of the liftings are local, and the central
peak increases as logNH2O. We expect a local lifting to
keep the dynamics of the system coherent, and to lead to
faster convergence towards equilibrium. It appears also
possible to replace the interaction with far-away H2O
molecules by the interaction with an effective medium
(given that the lifting flow remains local). In the “ra-
tio” and “outside-first” lifting schemes, this would prob-
ably not be possible as the lifting flow towards far-away

dipoles is of the same order of magnitude as the local
flow.

VI. CONCLUSIONS

In this work we have outlined the ECMC framework for
all-atom computations. Our algorithm advances a single
particle in the presence of long-ranged electrostatic inter-
actions in O(1) operations, with a mean free path which
decreases as O(1/ logN). This gives an overall complex-
ity of O(N logN) to advance N particles, each by O(1).
This speed can be achieved for locally charge-neutral sys-
tems, where particles can be grouped into local dipoles.
The algorithm can take into account the presence of free
point charges, and its performance worsens only grad-
ually with their number. The algorithm is manifestly
translation-invariant and event-driven. It is free of dis-
cretization errors, and exactly samples the Boltzmann
distribution, without needing a thermostat. Its outstand-
ing property is that it neither computes total forces nor
determines the system potential.

ECMC breaks with tradition in two ways. Firstly, as a
Markov-chain algorithm, it offers the freedom to choose
among a variety of moves. Our approach of advancing
single particles may be a first step only. Nevertheless,
as we have shown, it effectively rotates dipoles and flexi-
ble water molecules in three-dimensional space and sam-
ples the entire configuration space. We have explored the
great freedom to choose factors and liftings that suit the
problem at hand. Secondly, ECMC breaks with tradition
in that it is purely Particle–Particle: It treats electro-
static interactions between point charges, but is oblivious
to the electrostatic field. This aspect liberates it from the
interpolating mesh that in traditional Particle–Particle–
Particle–Mesh methods approximates the Coulomb field.
Rather, the algorithm is based on the interaction of pairs
of particles and, more generally, of factors that may com-
prise pairs of local dipoles or even more complex objects.

In this work, we have checked that thermodynamic
quantities from ECMC agree with those obtained with
methods that satisfy detailed balance. As a next step
for analyzing ECMC in all-atom systems, it will be im-
portant to study its relaxation dynamics in detail. This
dynamics will certainly depend on the choice of factors
and, for example, for the case of dipole–dipole factors
treated here, on the choice of liftings. The inside-first lift-
ing scheme yields mostly local dynamics, and we would
expect it to lead to a faster decay of correlation functions.
Besides this, we have discussed that the length and the
probability distribution of the event-chain parameter `,
and even the sequence of the directions of the event-chain
can significantly influence the ECMC dynamics although,
as we have verified extensively, the steady state is al-
ways given by the Boltzmann distribution. We would
hope that, in addition to the overall favorable algorith-
mic scaling, the fast decay of density fluctuations carries
over from short-range-interacting particle and spin sys-
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FIG. 16. Histogram of distance |r| between the active and the target particle for the Coulomb events for the “ratio”, “outside-
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tems. The influence of different factorization and lifting
schemes on the dynamics of ECMC will also have to be
understood. From an algorithmic implementation point
of view, we think that the parallelization of the method52

will have to be dealt with carefully.
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