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Abstract –We study the properties of correlation matrices widely used in the characterisation
of vibrational modes in colloidal materials. We show that the eigenvectors in the middle of the
spectrum are strongly mixed, but that at both the top and the bottom of the spectrum it is
possible to extract a good approximation to the true eigenmodes of an elastic system.

The excitation spectrum of crystalline but also disor-
dered colloidal solids has recently been studied in both
two [1–4] and three [5, 6] dimensions: Experiments typi-
cally image a thousand or so micron-sized particles; from
a video recording, computer analysis is used to extract a
matrix of correlated fluctuations. The hope is that the
spectrum and the eigenvectors of the correlation matrix
can be used to deduce interesting properties of the col-
loidal material [7–9], including local modes and incipient
soft structures, or even three dimensional elastic proper-
ties [10]. Most experimentalists work with the matrix

Cij = 〈δriδrj〉 =
1

T

T∑
t=1

δri(t)δrj(t) (1)

where δri(t) denotes a transversion fluctuation (in x and y
when imaging along z) of a particle at time t. For a system
of N particles this matrix has dimensions 2N ×2N . If the
particles are coupled with linear springs the correlation
matrix can be related to the interactions as follows

C =
1

βA
(2)

where A is the dynamical matrix of the system – at least
in the limit of large T . Thus the eigenvectors of C and A
should be identical and there should be an inverse relation-
ship between the eigenvalues of the two matrices. Even in
hard sphere systems the mode structure approximates this
linear Ansatz. β is the inverse temperature.

In previous work we considered the question of projec-
tion of the modes from three to two dimensions [10,11]. In
this paper we consider the effect of observation statistics
on the mode structure. It is already well known [12] that

Figure 1: Left: A low-energy mode for an elastic medium
eq. (3). Right: High-energy localised mode. Hexagonal lat-
tice with Dirichlet boundary conditions. N = 282 particles.

the use of a number of recordings (T ) which is smaller than
the number of observed degrees of freedom (2N) leads to
a rank-deficient matrix C for which many eigenvalues are
zero. Even when T > 2N the theory of Marchenko and
Pastur [13] shows that there are large systematic (i.e. non-
statistical) errors which appear in the spectrum. In fact
the observed spectrum is deterministically distorted as a
function of z = T/(2N).

The rather remarkable results on the evolution of the
spectrum of the correlation matrix are not matched by a
detailed theory of the evolution of the eigenvectors; re-
sults such as those in ref. [14] tell us about some angular
correlations but do not contain the all the information
needed by experimentalists to interpret typical data sets.
It seems clear that statistical and systematic noise in the
sum in eq. (1) will mix eigenmodes, in a manner which is
familiar from perturbation theory in quantum mechanics.
The point of the present paper is to quantify this mixing
in order to give simple rules of thumb as to how many
modes can be trusted in a correlation analysis.

Some authors give examples of eigenmodes extracted
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from the matrix C, often coming from different places in
the spectrum – for instance low-energy modes, high-energy
modes or modes coming deep within the spectrum, such
as near a van Hove peak. In the elastic model that we
consider a typical low-energy mode is shown in Fig. 1,
left. On the right of Fig. 1 we see a high-energy, localised
mode of A in a disordered elastic medium. Typically the
mode is represented as a series of arrows, with amplitude
proportional to the component of the eigenvector at the
particle position.

Our main conclusion is that the bottom of the spectrum
of A, including modes such as that depicted Fig. 1,left is
reproduced rather easily on diagonalisation of the corre-
lation matrix. The top of the spectrum depends on the
model considered: When we consider the elastic vibra-
tions of a disordered system with strong localisation the
top of the spectrum also converges for moderate numbers
of samples (though less well than at the bottom). In all
cases the middle of the spectrum leads to mixing of an
extensive number of eigenvectors, so that little informa-
tion on the true mode can be observed using a correla-
tion analysis. This is particularly the case near van Hove
singularities which seem to strongly favour mode mixing.
However, without disorder even the top of the spectrum
is badly reproduced; mode reconstruction clearly contains
components which are more model dependent than the re-
markable Marchenko-Pastur result which depends only on
the density of states of the original system.

The experimentalist should also worry about the effect
of the finite auto-correlation time for any experimental
system. This was studied for the spectrum in a number of
papers [15, 16], but no results are available for the effect
of correlations on modes. Thus, we conclude with a short
study on the influence of finite relaxation rates on the ob-
served mode structure and show that the mode structure
is remarkably stable even in the presence of slowly relaxing
modes.

Elastic model. – In this paper we study the modes of
a two-dimensional solid, firstly because data in published
experiments is recorded from two-dimensional slices but
also because two-dimensional elastic systems contain few
enough degrees of freedom so that we can use direct ma-
trix solvers to study the mode structure. The study of
a three dimensional medium would require more sophisti-
cated iterative algorithms.

We work with a network of central springs with the
energy

U =
1

2

∑
ij

Kij(rij − 1)2, (3)

where Kij is the spring constant between particles i and j;
rij is the separation between the particles. We either take
the spring constants as equal, in order to study a crys-
talline material, or we take a model of site disorder where
each particle is characterised by a random stiffness ki. We
set the bond constant K−1ij = k−1i + k−1j . We use a hexag-
onal lattice which generates an isotropic elastic system
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Figure 2: Participation ratios in a elastic medium with dis-
ordered elastic constants: from the dynamical matrix A (lower
curve, blue), and from the diagonalised correlation matrix C−1

(upper curve, red). We see that the system is characterised by
a number of high-energy, localised states. The sampled system
reproduces this fact rather badly except at very top of the spec-
trum. N = 282, z = 10. Abscissa λ for A and C−1. Note the
different upper limits in the spectrum due to the Marchenko-
Pastur law.

obeying the Cauchy relation between the shear and com-
pression modulus [17].

From the energy we generate the matrix

Aij =
∂2U

∂ri∂rj
(4)

of second derivatives as well as the Cholesky factorisation
of A which is used to generate the correlation matrix ac-
cording to the Wishart distribution for T samples [18].
This corresponds to generating the correlation matrix, C,
as an average of T statistically independent samples. It
ignores the possibly slow relaxation of modes in a true
experimental sample.

We generate a disordered medium with a strength of
disorder which is tuned so that the nature of the modes
is qualitatively similar to that observed in experimental
systems [4]. In particular we consider in Fig. 2 the partic-
ipation ratio,

1

p(λ)
= N

∑
i

v4iλ (5)

where viλ is the i’th component of the normalized eigen-
vector with energy λ. In Fig. 2 we plot p(λ) as a func-
tion of λ. p measures, approximately, the proportion of
sites over which a mode is localised. For extended modes
p is O(1). For a mode which excites a single site, p is
O(1/N). For an ordered system all modes are extended,
however on adding disorder we see that high-energy eigen-
modes localize to just a few sites, Fig. 1, right. For the
sampling z = 10 used in Fig. 2 many modes of the matrix
C are qualitatively different from those contained in A for
large λ. In particular the modes are often too extended.
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Figure 3: Visualisation of W on a logarithmic scale in order
to see the large number of elements with small amplitude. The
matrix is strongly diagonally dominant giving a bright central
band. Disordered elastic medium, N = 282, z = 60 averaged
over 20 realisations of the disordered matrix A. The diago-
nal dominance implies that it is above all modes with energies
which are close in A which are confused in the matrix C.
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Figure 4: Visualisation of the matrix W (linear scale) zoomed
to the lowest energy states of A. N = 282. Here C is recorded
with very poor statistics so that z = 0.75. Despite this we
see that several low-energy states of A are well reproduced in
the matrix C. Beyond the 7’th mode the amplitude is spread
between several modes, which are however still close to the
diagonal.

Characterizing the modes. – The main tool that
we will use to characterise the similitude of modes sam-
pled experimentally and deduced from the original elastic
system is the set of overlaps

Wij = (ui · vj)2 (6)

Where vj is the j’th eigenvector of A and ui is an eigenvec-
tor of C, which form a matrix with indices describing the
modes of C and A. We always sort the modes by increas-
ing eigenvalues for A, and by decreasing eigenvalues for C.
In the case of perfect statistics the matrix W converges to
the identity1. We also note that each row and column
of W sums to unity. We use deviations of W from the
identity to quantify non-convergence of the experimental
eigenmodes to their final limit. In Fig. 3 we plot W on a
logarithmic scale using a colour code to express the ampli-
tude of each element. We are firstly struck by the diagonal
domination of the matrix. The bright stripe indicates that
modes mostly mix with other modes with similar energies
– even if there is also a broad and diffuse background. We
also notice that the band is narrower in the top-left and
bottom-right corners which correspond to the bottom and
the top of the spectrum of A. W is more strongly diagonal
for these modes and thus the eigenvectors of C are close
to eigenvectors of A.

We confirm this point by plotting on a linear scale the
top left corner of the matrix W corresponding to the
lowest-energy states of A. In Fig. 4 the strong diagonal
for the first modes confirms that the lowest modes in the
system are very well reproduced in the correlation matrix.
It is only on going higher in the spectrum that we see the
broadening which indicates that each eigenvector of C is
described by several eigenmodes of A. We find that when
studying systems with O(1000) particles even when the
system is sampled with z = 0.75 the very first mode is
rather well represented in C, even though C is a highly
defective matrix.

How does mode mixing scale with N and z?. –
We now examine a row in the middle of the matrixW , and
plot the amplitude in a log-linear scale in Fig. 5. We see a
sharp central peak, superposed on a broader background.
We tried to characterise the width of the central peak by
using moments of the distribution, however the result was
unsatisfactory due to the background in the figure. We
chose an alternative method of characterising the signal
which was to take the band-width, b, which contains 90%
of the amplitude. This measure is much more robust to
a broad outlying signal and is used to characterise the
spreading of modes for the rest of this paper.

In Fig. 6 we choose several different sample sizes and
plot the 90% width, b scaled by the number of particles
as a function of the rank of the mode in the spectrum, n.
Each correlation matrix was recorded with z = 60 corre-
sponding to a high-statistics experiment. We see that all
system sizes behave in a similar manner. For both high
and low energies the band-width of the matrix is small, but
for most interior modes in C the band width is O(0.16N).
Thus a single mode in C is actually a mixture of an exten-
sive number of modes in A. In Fig. 7 we consider a single
system size and plot b as a function of 1/z. The curve

1There is a possible exception in a crystal where symmetry-
related modes can mix.
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Figure 5: A cut through the matrix W , corresponding to the
central row of the matrix C. A strong central peak is super-
posed upon a broader background, N = 482, z = 60. Note
that the largest element of W in this slice has an amplitude
close to 10−2 so that hundreds of modes from A are needed to
describe the bulk modes of C. Vertical lines denote the 90%
band width b.

comes to the origin linearly: It seems clear that extract-
ing accurate eigenmodes in the middle of the spectrum is
a very difficult task requiring very large values of z if the
only information available is the correlation matrix C.

We also performed a similar study on the matrix C for
an ordered elastic medium in which all the spring con-
stants are identical. The conclusions for the low-lying and
middle modes of A are very similar. However curves such
as Fig. 6 are rather different for the highest-energy modes.
There is a weaker drop of the curve on the right towards
zero and the top-most modes are badly represented by
the eigenmodes of C. Thus there seem to be some non-
universal features in the manner that eigenmodes of C are
represented in the modes of A; only the lowest modes are
faithfully represented in all systems. The representation
of the topmost modes is clearly model dependent.

We plot in Fig. 8 the full bandwidth curves for a crystal
for N = 582 for several different values of z; In this curve
different parts of the spectrum behave in different ways.
For low energies and for n/2N ∼ 0.5 there is a convergence
of the scaled curves for large z. This is the same conver-
gence behaviour that we saw in Fig. 7. Very differently,
for positions in the spectrum which seem to be associated
with the van Hove singularities there is a continuous evolu-
tion of the spectrum with z. This continuous evolution is
not seen for disordered systems for which the whole curve
seems to stabilise for large z (data not shown).

How many modes are reliable?. – We finish with
a study of how many modes in C are reliable. At both
the bottom and the top of the spectrum of A we find
how many modes are reproduced within C with a matrix
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Figure 6: 90% bandwidth, b of W for several different systems
sizes, measured for z = 60, N = 382, N = 182, N = 382,
N = 582. Plotted from top left to bottom right of the matrix.
The band width increases quadratically near the top left of the
matrix, corresponding to the lowest-energy modes of A. In the
centre of the matrix there is a broad range of modes where an
extensive fraction of eigenmodes are mixed together. For the
highest-energy modes of A the matrix C again gives a good
representation of the mode structure for a very small number
of modes. Disordered system.
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Figure 7: 90% bandwidth of the middle mode of W as a func-
tion of the inverse sampling, 1/z. Data for different system
sizes fall onto a single master curve. N = 182, N = 282,
N = 382, N = 582. Disordered system.

element2 Wij > 0.5. We plot the results independently
for the top and bottom of the spectrum in Fig. 9. The
most remarkable result is a rather good empirical scaling
so that the number of well reproduced modes m at the
bottom of the spectrum

m ≈
√
Nz/3 ∼

√
T independent of N (7)

2In practice this was a diagonal element in the cases we visually
checked as in Fig. 4
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Figure 8: The 90% bandwidth is plotted for the matrix W
for a perfect crystal. N = 582, for different z varying from
z = 1 (flattest curves) to z = 3200 (strongest peaks). We see
that large numbers of modes are well reproduced for small n
but far fewer modes are well reproduced at the top of the spec-
trum. The peaks are associated with the appearance of van
Hove peaks in the density of states which seem to favour mode
mixing, and a broader band in W .

This law works over large variations of z, N and depends
weakly on the degree of disorder in the elastic medium.

The data coming from the top of the spectrum is much
noisier and does not exhibit a clean scaling with N or z.
Indeed we also find qualitatively different results between
ordered and disordered systems – in an ordered system
no modes are resolved at the top of the spectrum. The
resolution that we find in the disordered system is perhaps
linked to the localised nature of the modes.

Effects of sampling rate. – We now consider the ef-
fects of finite relaxation times in an experimental system.
We know that long-wavelength modes relax more slowly
than those describing the shortest length scales. Since it
is these modes which are best described in the spectrum
of C we might fear a degradation of the method due to
rapid sampling. A full account would require a two fluid
theory of colloidal dynamics [19], we here use a simpler
description with a Langevin equation which gives a qual-
itatively correct description of the slowest, over-damped,
longitudinal modes. Thus we study a set of 2N coordi-
nates evolving according to the equation

dr

dt
= −Ar + ξ(t) (8)

where r is a vector and ξ is a vector of Brownian noise,
〈ξi(t)ξj(s)〉 = δijδ(t−s) 2/β.

We sample the positions regularly with a time step τ
which is a fraction f of the relaxation rate of the slowest
mode of the Langevin equation.

τ = f/λ1 (9)
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Figure 9: Number of good modes as a function of z. N = 182,
N = 282, N = 382, N = 582. Straight line as a guide to the
eye,m =

√
zN/2. Data from bottom of spectrum of A, collapse

to a single master curve. Data from top of the spectrum do not
collapse with this scaling. We only start seeing well resolved
modes at the top of the spectrum for z > 20. Numbers resolved
at the top and bottom of the spectrum only become comparable
for z ∼ 1000. Disordered system.

with λ1 the smallest eigenvalue of A. This gives the fol-
lowing update rule for the positions:

r′ = e−τAr +
∑
i

N (0, σi)vi (10)

with N (0, σ) normally distributed random numbers with
mean zero and variance σ2. They are independent for
different i. As above, vi is the eigenvector corresponding
to λi. For the equation (8) we find the variance for each
mode,

σ2
i =

1

βλi

[
1− e−2τλi

]
. (11)

We then build up our estimate of the covariance matrix
using eq. (1) with T = 2Nz samples. When τ is large each
mode is sampled independently as in the Wishart ensem-
ble considered above. When τ is very small the positions
remain highly correlated between successive samples.

We plot the bandwidth analysis of the dynamics,
eq. (10), in Fig. 10. We find the results most surpris-
ing: Already for the small value f = 0.02 the resolution of
modes within C is very close to that found in our above
study of the Wishart ensemble. Even though the modes
are sampled very inefficiently, the diagonalisation is able
to resolve the lowest modes within the system. Indeed
in the given example with z = 40 and f = 0.02 the sys-
tem is simulated for not quite one relaxation time of the
slowest mode; despite this the global appearance of the
bandwidth is close to the fully converged ensemble with
the same value of z.

Conclusion. – We have carried out a numerical study
of the mode structure of correlation matrices, of the sort
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Figure 10: Effect of autocorrelation on the mode resolution:
eq. (9) f = [.004 .005 .007 .01 .02 .04 .06 .1 .5 1 2.] from highest
to lowest curve, N = 282, z = 40. Already curves with f = .02
are well converged. All curves for high values of f superpose.

commonly extracted from colloidal materials. The low-
est eigenvectors of A, (which correspond to the top eigen-
vectors of C) are rather easily extracted from the matrix.
However within the bulk of the spectrum there is a mixing
of an extensive proportion of the exact modes for values
of z typically used in experiments. In the case of disor-
dered materials it is possible to study just a few eigen-
vectors at the top of the spectrum of A, even though the
top eigenvalues converge rather badly in the Marchenko-
Pastur theory. One of the most surprising features of
our results is the convergence of high-energy modes in the
spectrum, which has not been observed in earlier work [12].
However the authors of this study worked very close to the
limit z = 1 where the convergence of these highest modes
is not yet visible. Such large-z studies have now been pub-
lished by several experimental groups.

When we added the effect of finite relaxation times in
the construction of the correlation matrix we discovered
that the lowest modes are resolved with remarkably low
statistics.
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