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Colloidal, hard sphere materials are often modeled by short-ranged, pairwise repulsive interac-

tions. We study the matrix of correlations of particle displacements, which has often been studied

experimentally. The inverse of this matrix can be interpreted as an effective dynamical matrix. We

study the range and nature of the effective interactions that are generated in this mapping, and

we characterise the interactions which give rise to violations of the Cauchy relations in elasticity.

1 Introduction

Many experimental groups are now performing high statistics
imaging of colloidal materials with the aim of extracting the
displacement–displacement correlation function between many
particles. The question for the theorist is then how to describe
the link between the matrix of correlations and macroscopic prop-
erties of the material. The microscopic interactions between col-
loids can be very different, depending on the detailed chemistry
of the materials. For instance, both deformable1 and hard par-
ticles2 are available for the experimentalist to study. This paper
treats in detail the case of hard-sphere crystals where elasticity is
generated from entropy changes.

Once the matrix of correlations between particle displacements,
G, is available, it is traditional to invert it3–9 and to interpret the
result as the effective “dynamical matrix” D for the particles10

– one can also extract the elastic moduli, characteristic of the
underlying solid. However, there are surprises and subtleties in
the results. In particular the effective interactions in the hard-
sphere system turn out to show substantial deviations from the
Cauchy relation for elastic solids.11–14 The Cauchy relations re-
duce the number of independent elastic constants in materials be-
low the number expected from counting arguments and symmetry.
Cauchy found that linear relations occur between a priori inde-
pendent constants if a particular microscopic constitutive relation
is assumed; the Cauchy relations apply if interactions between
atoms (or colloids) are pairwise, central and sufficiently short
ranged. The Cauchy relations can be written as an equality l = µ
between two Lamé coefficients in the cases of a two-dimensional
hexagonal crystal or a cubic crystal in three dimensions. For the
latter one finds in Voigt notation C12 = C44. The breakdown of
Cauchy’s relation in hard-sphere crystals (with short-ranged cen-
tral interactions) is thus a small surprise, though as showed by
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Hoover15 extra contributions (beyond those found by Born10)
are found in the expressions for the elastic constants at any finite
temperature.

In this paper we characterise the effective “spring constants”
(that is elements of the matrix D) between particles in a colloidal
crystal in one, two and in three dimensions. We show that beyond
one dimension effective interactions extend beyond first nearest
neighbour in the crystal. We also examine the nature of contri-
butions to the dynamical matrix which do not occur in “Cauchy”
materials, defined here as materials with rapidly decaying central
interactions.

2 Numerical results

We performed very high statistics event-driven molecular dynam-
ics simulations of N hard spheres in one, two and three dimen-
sions (d = 1,2,3). In one dimension the particles are confined to
a line. In two dimensions we simulate a hexagonal crystal within
a box adapted to the Bravais lattice. In three dimensions we per-
form simulations of face-centred cubic crystals, again within a
box adapted to the Bravais lattice. In all dimensions the simula-
tion box is continued periodically. During a simulation the total
momentum and the (kinetic) energy are conserved. The densities
are always so high that no particle interchange occurs over the
simulation time, so that particle diffusion and defects can be ne-
glected in the data analysis. The Bravais lattice thus defines the
reference positions of the spheres, and these coincide with the
average positions.

For all numerical data the units are chosen such that the par-
ticles have unit diameter, unit mass, and that kT = 1 with T the
temperature. Throughout the paper, Greek indices denote spatial
directions, and i, j,m,n are tuples of integer indices on the Bra-
vais lattice. They identify the sites on the lattice. The spatial
(Euclidean) positions of lattice sites are denoted by vectors, Ri
for lattice site i. The Ri are multiples of the lattice spacing d0.
All differences between lattice indices, i � j, or lattice positions,
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Ri�j = Ri � Rj are understood modulo the periodicity, the result
being mapped back into a centered copy of the simulation box.

During the simulation we take a series of K data recordings.
For each recording, we measure the deviations ui := ri � Ri of
the instantaneous particle positions from their reference positions
and calculate the dN⇥dN correlation matrix

G(i,a)(j,b ) :=
1
K

K

Â
k=1

uia ujb (1)

The matrix has a simple physical interpretation from linear re-
sponse theory: It determines the vectorial displacement at j due
to a force at i. We will thus call it a Green function in the follow-
ing. In order to reduce statistical noise, we average elements of G
which are related by the translational symmetry of the lattice,

Gab (n) :=
1
N Â

i
G(i,a)(i+n,b ). (2)

The sum runs over all sites of the Bravais lattice. We could also
have averaged over the rotational and inversion symmetries, but
we preferred to see the symmetries appear from the data in or-
der get a idea of the statistical errors; the translational average
appeared to be sufficient for noise reduction. A visual repre-
sentation of the elements of G(n) in two dimensions is given in
Fig. 1. It is a rather structureless object, and it depends on the
size and shape of the periodic box due to the logarithmic nature
of two-dimensional Green functions. In the figure we plot the
elements of G(n) in a rotated coordinate system with one basis
vector aligned with the vector Rn. We note in particular the inter-
esting physical structure that occurs in the off-diagonal elements.
These elements of the response function vanish along high sym-
metry directions: a force along these symmetry directions gives
a purely parallel displacement. This gives rise to a set of radial
white lines in the lowest panel of Fig. 1.

We then use matrix algebra to numerically invert the large ma-
trix G to produce the effective interaction matrix D. More pre-
cisely, we use the translation-averaged dN⇥dN matrix

Gab (i, j) := Gab (j� i). (3)

and take its Moore–Penrose pseudoinverse because we must avoid
inversion of the zero eigenvalues in G which come from momen-
tum conservation. The inverse is denoted by Dab (i, j). In the
following, we will analyse the properties of the resulting 2⇥2 ma-
trices

Dab (n) :=
1
N Â

i
Dab (i, i+n). (4)

We note that in a linear network all correlations can be calcu-
lated from G via Wick’s theorem. If one builds a network with lin-
ear springs and short-ranged interactions, it is natural that D(n) is
sparse, i.e. that it is exactly zero for most n. One of the questions
that we answer in this paper is to what degree this remains true
for the effective interactions generated in hard-sphere materials.
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Fig. 1 The two-dimensional Green function in a periodic 32⇥32
hexagonal lattice. Plotted are the components of the 2⇥2 matrices

Gab (n) in a rotated orthonormal basis (R̂n, ô): Gk = R̂T
n GR̂n, G? = ôT Gô,

G
sym

= (R̂T
n Gô+ ôT GR̂n)/2. The antisymmetric off-diagonal terms vanish

to within statistical noise (±10�9
). In the lowest panel the white lines

correspond to a mechanical response parallel to an imposed force.
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Fig. 2 The effective interactions D( j � i) in a one-dimensional chain of

N = 100 impenetrable rods. Larger blue symbols are positive values,

smaller red are symbols negative values. K ⇠ 107 N recordings. Beyond

nearest neighbours the interactions are zero to within statistical noise.

2.1 One-dimensional system
Previous work has led to a detailed understanding of the one-
dimensional problem.16 We do not treat it in detail, but rather
use it to check some of the chain of data analysis. The result is
very simple – that the effective interaction in one dimensional flu-
ids is limited to nearest neighbours; for larger separations D is
zero. We used our code for simulation and data analysis and con-
firmed this results. Beyond the nearest neighbour, the effective
interaction D( j � i) in Fig. 2 falls to zero within statistical noise.
Note that the relative statistical noise in this plot is at the level of
10�5, showing the very high precision simulations with very large
data sets. Given the excellent results found in one dimension, we
can feel confident that the very different results found in two and
in three dimensions are a result of differing physics, and not prob-
lems related to systematic or statistical errors in the data sets.

In the data of Fig. 2 we find the ratio between the two nonzero
values to be D(0)/D(1) = �2.0 ± 10�5. This is precisely the ratio
that is expected from a discretisation of the Laplacian operator in
terms of nearest neighbours. We thus found the expected result,
namely that the inverse of the (static) Green function is the corre-
sponding differential operator of one-dimensional (static) elastic-
ity.

2.2 Two-dimensional crystal
We started by performing simulations in systems with N = L⇥L
hard disks, L varying from 10 to 100 with fixed surface fraction
f = 0.85. We expect that the elements of the effective dynamical
matrix D come from the local physics (and available entropy) oc-
curring near each particle and are not the results of a non-trivial
propagation of boundary effects down to the microscopic scale. If
the physics is local we then expect that the values of the elements
of D vary very little with changes in the system size. To test this
we plot in Fig. 3 the evolution of tr(D) with the system size L and
find that the lines involving the evolution of D for small separa-
tions are remarkably stable. This is true for all matrix elements of
Dab , not only for the trace. Since we are performing simulations
within a periodic box, it is clear that we should only be evaluating
elements for separations such that periodic copies do not contam-
inate the result. Thus we will only quantitatively analyse D for
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Fig. 3 Effective interactions as a function of the inverse system size 1/L.

Different plot styles correspond to different neighbour layers, starting

from 0 at the top, down to 7. Fewer layers are plotted for L = 10.

0 2 4 6 8 10 12 14

10�4

10�2

100

102

104

neighbour layer

Dk
D?
Dsym
Dasym

Fig. 4 Effective interactions in a hexagonal hard-disk crystal with L = 32.

Larger blue symbols are positive values, smaller red symbols are

negative values. K ⇠ 3.5⇥106 2N recordings. Surface fraction f = 0.85.

These data required around 300 000 CPU core hours.

separations which are smaller than L/2.
The correlation function G, which is measured in the simula-

tions and displayed in Fig. 1, is subject to strong finite size cor-
rections due to the logarithmic nature of two-dimensional Green
functions. The components of the matrix D, however, do not
evolve for small values of 1/L. From the curves in Fig. 3 we
decided to use a fixed value of L = 32 for further simulation in
order to collect the highest possible statistics, while being able to
resolve effective interactions out to a large distance.

The resulting matrix elements are plotted in Fig. 4. As we did
already in Fig. 1, we rotated the 2⇥2 matrices Dab (n) for each
separation vector Rn. Using the orthonormal rotated basis (R̂n, ô),
where the hat denotes a normalised vector, the interactions plot-
ted in Fig. 4 are

Dk(n) := R̂T
n D(n)R̂n

D?(n) := ôT D(n)ô

Dsym(n) :=
�
R̂T

n D(n)ô+ ôT D(n)R̂n
�
/2

Dasym(n) :=
�
R̂T

n D(n)ô� ôT D(n)R̂n
�
/2.

(5)

The interaction in Fig. 4 does not vanish beyond the first layer
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Fig. 5 Matrix elements of D(n) in rotated frames of reference, for

several Rn. The center of the hexagon corresponds to Rn = 0. The

antisymmetric off-diagonal D
asym

vanishes to within statistical noise.

The reflection anti-symmetry of Dsym imposes that the elements of Dsym
are zero for the first two neighbour layers. All elements of Dsym are small

compared to Dk and D?.
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Fig. 6 Some linear combinations of matrix elements Dab (n) for

several Rn. The antisymmetric off-diagonal (Dxy �Dyx)/2 vanishes to

within statistical noise.
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of neighbours – very differently from its unidimensional counter-
part in Fig. 2. We here observe that D(n) is not sparse. We used
high statistics in this plot to be sure that the interaction data is
well separated from statistical noise. We find it to be the case for
the first six layers of neighbours. The noise level can be read off
from the values of Dasym which are zero in noiseless data. An-
other measure of the statistical noise is the spread of those sym-
bols which are equal by symmetry of the lattice.

We tried to characterise the decay of the effective interactions
with particle separation, which we can resolve out to the eighth
layer of neighbours. We tried fitting the data with both exponen-
tial and power law decays, plotting both particle separation and
layer number for the abcissa. No fit seemed totally convincing
with our data. If one insists on fitting with a power law kRnka ,
one finds a ⇡ �6 ± 0.5. At the moment we do not have analytic
arguments that predict the functional form of the decay.

2.2.1 Two-dimensional visualisation

We now give some more details of the data presented in Fig. 4.
In particular, we like to visualise those points which are charac-
terised by being within same neighbour level, but which differ
with respect to the hexagonal symmetry.

We can study the 2⇥2 matrices D(n) in different frames of refer-
ence. The first frame of reference is the orthonormal basis (R̂n, ô)

already used above. In Fig. 5 we plot the parallel, the orthog-
onal, and the off-diagonal component of the matrix. All three
panels are invariant under rotations of 60 degrees. Under mirror-
ing, however, only the first two are invariant while Dsym changes
sign. We did not plot Dasym because it contains only noise.

A second manner of examining the data is in the fixed Carte-
sian frame, which is the same for all n. In Fig. 6 we study the
trace of the matrix, tr(D), the first component Dxx of which we
subtracted half the trace, and the off-diagonal element Dxy, sym-
metrised. The component Dyy � tr(D)/2 is not plotted as it is sim-
ply the negative of Dxx � tr(D)/2. Only tr(D) still has hexagonal
symmetry. The two bottom panels show (skew) symmetry with
respect to mirroring about the x-axis and the y-axis. The special
choice of component combinations in Fig. 6 is motivated by the
continuum limit which we discuss now.

2.2.2 Hexagonal continuum limit

The matrix Dab (n) is the inverse of the Green function of static
elasticity and is thus expected to be related to the corresponding
differential operator – or rather its hexagonal discretisation. We
now summarize the usual continuum elastic theory to establish
the expectation for D if the elastic tensor were a simple constant.
Starting with the elastic constant for a hexagonal crystal in two
dimensions in terms of Lamé coefficients,

Cabst = ldab dst + µ
�
das dbt +dat dbs

�
, (6)

we find the differential operator to be (Sec. 3 of Ref. 13)

Das = �Aabst ∂b ∂t , with (7)

Aabst := Cabst +Tbt das . (8)

The two elastic tensors A and C coincide for systems whose ref-
erence state is stress-free. The hard-sphere crystal in our numeri-
cal simulation is compressed by the periodic boundary conditions,
leading to the isotropic stress Tbt = �Pdbt with the pressure P.
Consequently, the two tensors A and C are different. Assembling
these results, we find

Dab = �(µ �P)dab —2 � (l + µ)∂a ∂b . (9)

For these second derivatives, we can produce simple discretisa-
tions in terms of finite differences on nearest neighbours. In par-
ticular, the combinations of matrix elements used in Fig. 6 are
simple combinations of second derivatives,

trD µ �—2 =
1

3d2
0

+6 �1
�1�1

�1
�1 �1

(10)

Dxx � trD
2

µ ∂ 2
y �∂ 2

x =
1

3d2
0

0 �2
+1+1

�2
+1 +1

(11)

Dxy +Dyx

2
µ �

∂x∂y +∂y∂x

2
=

1p
3d2

0
0 0
�1+1

0
�1 +1

(12)

We see that these stencils are qualitatively reproduced in the cen-
tral parts of the panels in Fig. 6. However, Fig. 6 shows nonzero
interactions also beyond the first layer of neighbours. Another dif-
ference is that for tr(D) we find a middle value which is �5.6 times
the values found on the first neighbours (instead of �6). When
comparing the values of the first neighbours among themselves,
the stencils are again well reproduced, with variations as small
as ⇠ 10�5 in all three panels of Fig. 6. The skew symmetry of the
operator ∂x∂y is found again in all values of Dxy(n). This symme-
try imposes the horizontal and the vertical white lines (zeros) in
the third panel of Fig. 6.

The matrix Dab (n) encodes the full dispersion curves that are
required to determine the spectral properties of the fluctuations.
In particular, one can extract the elastic tensor A from the long-
wavelength limit. The usual way to do this calculation is to
perform a discrete periodic (fast) Fourier transform on the ma-
trix Gab (i, j) and to observe that the translation invariance ren-
ders the result block-diagonal. For each reciprocal vector Qm we
have one Fourier transformed d⇥d matrix

G̃ab (m) := N Â
n

e�iQm·Rn Gab (n) (13)

=
D

ũa (m)ũb (m)
E
. (14)

The overline denotes a complex conjugate. To leading order, this
matrix scales as |Qm|�2, such that we can extract the elastic tensor
as the long-wavelength prefactor to this scaling,

Aasbt Q̂s Q̂t =
kT N2

V0
lim

|Qm|!0

⇥
G̃(m)�1⇤

ab
|Qm|2

. (15)

In practice, rather the eigenvalues of the inverse matrix are plot-
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Fig. 7 Dispersion curves used to obtain the elastic moduli in the

limit |Q| ! 0, here for L = 100. The dotted lines indicate values from a

different numerical method working at |Q| = 0.

ted, see Fig. 7. The long-wavelength limit is then done by extrap-
olation by eye. The upper curve corresponds to the longitudinal
waves, converging to Axxxx = (µ �P)+(l +µ) in the limit |Q| ! 0.
The lower curve gives the transverse value Axyxy = µ �P.

The same limit can be done using the matrix D instead of G.
The block structure helps to invert the large matrix, the inverse
is again block-diagonal. The d⇥d blocks are simply the Fourier
transforms of the matrices Dab (n): [G̃(m)�1]ab = D̃ab (m)/N2.
For the long-wavelength limit we expand the exponential in the
definition of the Fourier transformation (13) around Qm = 0. The
sum over the constant term vanishes, Ân Dab (n) = 0. The linear
term vanishes due to symmetry, such that we obtain the quadratic
term as the leading one. This conveniently matches with what we
require for the limit in Eq. (15). Factorising the unit reciprocal
vectors, we obtain for the elastic tensor

Aasbt = �1
2

kT N
V0

Â
n

Rns Rnt Dab (n). (16)

To determine the Lamé coefficients, we can either choose individ-
ual components such as Axxxx above, or we can do a “hexagonal
average”, which amounts to reducing the rank-4 tensor to scalars,
for example with dab dst and with das dbt . This gives a 2⇥2 sys-
tem of equations for (µ � P) and (l + µ), which when solved be-
comes

µ �P = � 1
16

kT N
V0

Â
n

R2
n
�
3D?(n)+Dk(n)

�
(17)

l + µ =
1
8

kT N
V0

Â
n

R2
n
�
D?(n)�Dk(n)

�
(18)

The summands are displayed in Fig. 8. They decrease with in-
creasing distance, as expected, and their sums converge. We visu-
alise the convergence in Fig. 9 where we added up the summands
layer by layer. The final values are µ �P = 373 and l + µ = 553.

In order to extract the Lamé coefficients, we need also the value
of the pressure P. During simulations, we tracked the average flux
of linear momentum, which is a mechanical definition of the pres-
sure tensor. We further measured the response of this tensor to
small deformations of the simulation box, which presents another
(faster converging) way to calculate the elastic moduli. Notice
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Fig. 8 The summands of Eqs. (17) and (18).
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Fig. 9 Convergence of the sums in Eqs. (17) and (18).
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that this method corresponds directly to “|Q| = 0”, no limit has to
be taken. We obtain the values ⇤

P = 34.4, µ = 405, l = 143.5 . (19)

They are used in Fig. 7 to check the consistency of the different
methods. Also the values extracted from Eqs. (17) and (18) are
reasonably close.

2.3 Three-dimensional crystal
We also performed simulations in three dimensions, collecting
high statistics data on a system of dimensions L = 15. Here, the
result is similar to two dimensions, the effective interaction does
not vanish beyond the layer of nearest neighbours but shows a
rapid decrease. We adopt the same route of a rotated frame of ref-
erence to plot in Fig. 10 the matrix elements of the 3⇥3 matrices
Dab (n). We choose an orthonormal basis (R̂n, ô1, ô2), in which
the matrix comprises the following blocks:

 
Dk vT

w D?

!
(20)

As before, Dk = R̂T
n DR̂n, but D? is a 2⇥2 matrix, and v,w are two-

dimensional vectors. As the basis vectors ô1, ô2 can be chosen with
an arbitrary rotation about the vector R̂n, we are only interested
in invariants of D?,v,w under this rotation. For the matrix D?
we thus plot in Fig. 10 the trace of D?, its anti-symmetrised off-
diagonals D?,asym and some notion of its determinant. For v,w we
plot the modulus after (anti)-symmetrising, Dv,sym := kv + wk/2,
Dv,asym := kv � wk/2. The lowest panel in Fig. 10 allows one to
estimate the noise level for the given statistics.

If again one insists on an algebraic fit D(n) µ kR/d0ka , one
finds a ⇡ �8±1. In three dimension the data display less scatter
when plotted in terms of neighbor layer, rather than separation.
This is a nontrivial geometrical effect which is already visible in
two dimensions: In the first panel of Fig. 5, the values on the
diagonals of the hexagon are larger than the values at the same
distance (even larger than those on the same neighbour level).
This creates within every neighbour level (or distance) a tendency
which is opposed to the general trend.

3 Effective interactions and the central

force model

The simplest (Cauchy) model of elasticity in the physics of solids
supposes that interactions are pairwise and central between all
particles in the solid, deriving from a scalar potential. In this
section we study the elastic properties of such systems, in order
to better see where the numerical data demonstrates the presence

⇤ These values are compatible with those given in Ref. 17. We applied the box-
deformation method also to the value f = 0.863714 which is given in that reference,
and our implementation reproduces exactly the given values for the elastic moduli.
Concerning the numerical values of elastic moduli, there was a disagreement in the
literature between Ref. 14 and Ref. 17, see also subsequent publications. Given that
we implemented both the fluctuation method and two deformation methods (in a
second one the spheres are deformed instead of the box) which all give the same
result, we think that we can resolve the debate in favour of Ref. 17.

0 2 4 6 8 10

10�4

10�2

100

102

neighbour layer

D?,asym
Dv,asym

10�4

10�2

100

102 ±
���det(D?)� tr(D?)2/4

��

10�4

10�2

100

102
Dv,sym

10�4

10�2

100

102

0 2 4 6 8 10
neighbour layer

Dk
tr(D?)/2

Fig. 10 Effective interactions in a FCC crystal of N = 153
hard spheres.

Larger blue symbols are positive values, smaller red symbols are

negative values. K ⇠ 6.8⇥104 3N recordings; volume fraction f = 0.57.
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of non-central potentials.

The total potential energy F of a configuration is a function of
all particle positions ri. It is expressed as a sum of functions gij,

F({r}) = Â
(ij)

gij
�
(ri � rj)

2/2
�

(21)

The sum runs over all different pairs of particles. To simplify the
algebra and avoid square roots in the calculations, the gij are func-
tions of the distance squared. The functions should be identical
for symmetry-related pairs of particles, but otherwise each func-
tion is independent.

3.1 Description in terms of global deformations

The elastic behaviour of such a solid can be calculated via means
of the canonical partition function and via a Taylor expansion of
the Free Energy F(h) = �kT ln(Z(h)) about zero strain (h = 0).15

Here, the whole box is changed parametrically, with h being the
parameter. We could therefore speak of a “|Q| = 0” method which
requires no long-wavelength limit. The resulting stress tensor and
elastic tensor are expressed by the usual Gibbs-weighted average
over configurations,15

Tab =
1

V0

∂F
∂hab

(0)

= �kT
N
V0

dab +
1

V0

D
Â
(ij)

g0
ij rij,a rij,b

E
(22)

Cabst =
1

V0

∂ 2F
∂hab ∂hst

(0) = �2kT
N
V0

dat dbs

� 1
V0 kT

Ccc
⇣

Â
(ij)

g0
ij rij,a rij,b , Â

(ij)
g0

ij rij,s rij,t
⌘

+
1

V0

D
Â
(ij)

g00
ij rij,a rij,b rij,s rij,t

E
(23)

Here, V0 is the volume of the periodic box, and the sums run
over all different pairs of particles, their difference vectors being
denoted by rij := ri �rj. The function Ccc(a,b) := habi�haihbi is a
cumulant-like cross-correlation function. The terms on the right-
hand side of Eq. (22) are called the kinetic and the virial terms.
The terms in Eq. (23) are called the kinetic, the fluctuation, and
the Born terms.15

The virial term and the Born term relate a global change of
strain, which is a parametrical change, to displacements of indi-
vidual particles.

3.2 Description in terms of local displacements

Instead of global deformations, we would like to learn more about
the energy of local deformations. For this we express the change
of potential energy F({r}) in terms of small-amplitude displace-
ments around the reference state (positions Ri on the Bravais lat-
tice). The reference state is perfectly hexagonal and thus has in-
version symmetry, which imposes that the partial first derivatives

vanish when evaluated at the reference positions:

∂F
∂ ria

�
{R}

�
= 0 (24)

for all i and a.† From Eq. (24) it follows that the increase in
potential energy of the system due to local displacements is given
to quadratic order by

DF := F
�
{r}
�
�F

�
{R}

�
=

1
2 Â

a,b ,i,j
Hab (j� i)uia ujb (25)

where, as above, ui = ri � Ri is the displacement vector of parti-
cle i. The idea of this section is to assume that the configurations
are normal distributed with weights exp{�DF/kT}. The inverse
of the displacement correlation is then given by the Hessian ma-
trix, huia ujb i�1 = Hab (j� i)/kT . It is easier to understand the true
interactions after studying this simplified problem, and it is thus
worth while comparing H and D. We remember that the units
here are chosen such that kT = 1. The Hessian matrix consists of
second derivatives, evaluated at the reference positions,

Hab (j� i) :=
∂ 2F

∂ ria ∂ rjb

�
{R}

�
. (26)

Start with the first derivative

∂F
∂xi

�
{r}
�

= Â
j 6=i

(xi � xj)g0
ij (27)

and obtain Hab (j� i) for i 6= j:

Hab (j� i) = �(Ria�Rja )(Rib �Rjb )g00
ij �dab g0

ij, (28)

We abbreviate our notation by introducing Rj�i = Rj � Ri and
gj�i = gij and obtain

Hab (n) = �Rna Rnb g00
n �dab g0

n. (29)

At j = i, the matrix is constrained by the fact that the sum over all
n vanishes,

Hab (0) = � Â
n 6=0

Hab (n). (30)

We can compare Hab (n) and Dab (n) in different frames of refer-
ence. In the rotated frame in which one axis is aligned with the
difference vector, we find

Hk(n) = �R2
ng00

n(R2
n/2)�g0

n(R2
n/2)

H?(n) = �g0
n(R2

n/2)

Hsym(n) = 0.

(31)

The corresponding results for the hard sphere system are plotted
in Fig. 5. It is striking that Hsym(n) is zero for all n, whereas
Dsym(n) has nonzero values, which must be a consequence of

† Notice that we do not globally deform the system when displacing individual parti-
cles. The vanishing of the first derivatives in Eq. (24) thus does not contradict the
nonzero pressure in the reference state, but we cannot calculate it from Eq. (24)
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Fig. 11 The combination of matrix elements D(n) used in Eq. (32).

non-central forces in the effective theory. We note that Dsym(n) is
smaller in amplitude than Dk and D?, so that the non-central na-
ture can be considered as a correction to the dominant terms. We
also see that g0

n can be read off from the perpendicular component,
which allows to calculate the effective force between particles, be-
ing f(n) = ±Rng0

n. We can also extract the second derivative

g00
n(R2

n/2) =
H?(n)�Hk(n)

R2
n

. (32)

Figure 11 shows the corresponding values for the matrices D.

We can also examine the results in the non-rotated frame, for
which the corresponding values of D were given in Fig. 6. In
particular, for the off-diagonal terms we find

Hxy(n) = �XnYng0
n. (33)

We find the same antisymmetry with respect to the x-axis and the
y-axis that was observed in Fig. 6.

3.3 Continuum limit

We can do the same long-wavelength limit that led to Eq. (16)
also with the matrix H(n) instead of D(n). This will lead us back
to the global tensors of Sec. 3.1. Starting with the discrete Fourier
transform, then expanding the exponential and eliminating the
sum according to Eq. (30) yields the equivalent of Eq. (16),

Āasbt := � N
2V0

Â
n

Rn,s Rn,t Hab (n)

=
N

2V0
Â
n

Rn,s Rn,t
�
Rn,a Rn,b g00

n +dab g0
n
�
. (34)

We use an overbar to distinguish this tensor from the true elastic
tensor. The corresponding Lamé coefficients l̄ , µ̄ can be obtained
from Ā as in Eq. (8), if the effective stress tensor is known. We
note that the effective force between two particles is given by

fij = �(Ri �Rj)g0
ij. (35)

The virial part of the stress tensor is thus

T̄st = � 1
2V0

Â
(ij)

(Ri �Rj)s fij,t

=
N

2V0
Â
n

Rn,s Rn,t g0
n. (36)

This sum was already found as the last term of Eq. (34). Accord-
ing to the relation between the elastic tensors Ā and C̄, Eq. (8),
C̄ is of appealingly simple form,

C̄asbt =
N

2V0
Â
n

Rn,a Rn,s Rn,b Rn,t g00
n. (37)

Both sums in Eq. (36) in Eq. (37) occurred in very similar form
in the virial part of the stress tensor, Eq. (22), and in the Born
term of the elastic tensor, Eq. (23). This is of course no coinci-
dence. Both kinetic terms and the fluctuation term are missing,
however. The absence of these terms implies that the tensor C̄
has a higher symmetry than the true elastic tensor in Eq. (6). It is
invariant under arbitrary index permutations and therefore satis-
fies the Cauchy relation µ̄ = l̄ .

In the same way as we calculated the Lamé coefficients from D,
we can proceed here. The result is already given by Eq. (18)
because of the Cauchy relation. In terms of the functions gn it
reads

l̄ = µ̄ =
N

16V0
Â
n

R4
ng00

n. (38)

The values for µ and l in Eqs. (19) show that the hard-disk crystal
is far from being Cauchy. If we blindly apply Eq. (38) to the
data, using R2(D? � Dk) as the summand, according to Eq. (32),
then we simply calculate the average value (µ +l )/2. This might
sound quite acceptable to some. How conceptually wrong this
procedure is can be exemplified for the pressure: It is minus a
diagonal term of the stress in Eq. (36), or P̄ = � N

4V0
Ân R2

ng0
n. If

we take �D?(n) for g0
n, motivated by Eq. (31), then we find the

value �96 for this effective pressure. This is clearly unacceptable
– even the sign is wrong. In fact, a close look on Eqs. (17) and
(18) reveals that the sum calculates actually P + (l � µ)/2 and
equals the pressure only to the extent that the Cauchy relations
are satisfied.

One concludes that the central force model is too simplified
for detailed modeling of the elastic properties of hard spheres.
However, in softer systems one might hope that such an analysis
remains useful.

4 Conclusions

We have collected very high statistics data on the effective inter-
actions generated in a hard-sphere system. In one dimension
the results are trivial, as was expected: The effective interac-
tions between hard rods are limited to nearest neighbours. In
higher dimensions (two and three) the results are much more in-
teresting. Despite the true interactions being localized to nearest
neighbours, we find farther-reaching effective interactions from
the analysis of displacement correlations.

The theoretical interpretation of these results seems difficult.
We provide a first interpretation in Section 3 in terms of the
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Cauchy model, which uses pairwise central interactions. Interest-
ingly, when analysed in terms of global strains, this model does
not imply the Cauchy relation (Sec. 3.1) but allows the full set
of Lamé coefficients – as required by the numerical realization.
The calculation cannot yield, however, information on the range
and decay of the effective interactions. These interactions are
accessible in the setting of Sec. 3.2 where individual particles are
displaced. Unfortunately this setting does not reproduce correctly
the global symmetry of the elastic moduli but rather predicts that
l = µ (Cauchy relation). It further predicts that some elements
of D are strictly zero, for for instance Dsym – This is clearly not
realized by the numerical system.

The presented results thus open the quest for a better calcu-
lation than the one in Sec. 3.2. In particular one would like to
predict how the effective interactions decay with distance. One
possibility might be to start with a weakly perturbed Gaussian
system and add extra non-linearities and non-central forces as
perturbations. But this is rather ad hoc, and it is not clear exactly
what should be the set of extra terms that could be added.
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