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We study the dynamics of one-dimensional (1D) interacting particles simulated with the event-
chain Monte Carlo algorithm (ECMC). We argue that previous versions of the algorithm suffer from
a mismatch in the factor potential between different particle pairs (factors) and show that in 1D
models, this mismatch is overcome by factor fields. ECMC with factor fields is motivated, in 1D, for
the harmonic model, and validated for the Lennard-Jones model as well as for hard spheres. In 1D
particle systems with short-range interactions, autocorrelation times generally scale with the second
power of the system size for reversible Monte Carlo dynamics, and with its first power for regular
ECMC and for molecular-dynamics. We show, using numerical simulations, that they grow only
with the square root of the systems size for ECMC with factor fields. Mixing times, which bound
the time to reach equilibrium from an arbitrary initial configuration, grow with the first power of
the system size.

I. INTRODUCTION

The dynamics of physical systems plays an important
role in numerous fields of science. The study of dynam-
ics aims at elucidating equilibrium and non-equilibrium
phenomena, including correlation functions, coarsening
dynamics after a quench, and manifestly non-equilibrium
phenomena such as turbulence. In computational statis-
tical physics, Markov chain Monte Carlo (MCMC) [1–3]
and molecular-dynamics (MD) algorithms [4] are often
employed to generate equilibrated samples and to de-
termine thermodynamic averages and correlations. The
non-equilibrium aspect then consists in characterizing
the approach to equilibrium from an arbitrary, atypi-
cal, initial condition. This is quantified by the mixing
time [2], an important figure of merit for MCMC. The
other important time scale characteristic of a physical
system is the autocorrelation times of the underlying
Markov process given by the inverse gap of the transi-
tion matrix.

In reversible Markov chains (as used in the vast major-
ity of MCMC algorithms), the requirement that the long-
time steady state corresponds to thermodynamic equi-
librium is expressed through the detailed-balance con-
dition, which assures that all the net probability flows
vanish in equilibrium. In recent years, however, irre-
versible Markov chains have been found to show consider-
able promise [5–8]. They feature a steady state with non-
vanishing net probability flows if a weaker global-balance
condition is satisfied. Global balance corresponds to an
incompressibility condition in configuration space: the
steady-state flows into each configuration sum to the
flows out of it.
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An example of an irreversible Markov chain is the
event-chain algorithm (ECMC) [9, 10]. This algorithm
has been successfully applied to many problems from
hard-sphere and soft-sphere melting [11–13] to spin mod-
els [14, 15] and quantum-field theory [16]. In this pa-
per, we study the relaxation times of ECMC in one-
dimensional (1D) models of N particles with local in-
teractions [17, 18]. We analyze in detail the relaxation of
both Lennard-Jones and hard-sphere models, study the
statistical properties of ECMC trajectories and show how
to greatly accelerate known algorithms by the introduc-
tion of a “factor field”, which compensates the system
pressure, P , without influencing physical properties.

A. Characteristic times of Markov chains

Irreversible MCMC algorithms can be faster than
their reversible counterparts. A particularly interesting
case is the 1D hard-sphere model of N spheres (rods).
For this model, the local heat-bath algorithm mixes in
O
(
N3 logN

)
moves [19] on an interval with fixed bound-

ary conditions. The mixing time for the same model
with periodic boundary conditions is between O

(
N3
)

and O
(
N3 logN

)
[20]: Simulations favor the latter [17].

The reversible Metropolis algorithm has a similar mixing
behavior. Various local irreversible Markov chains mix in
O
(
N5/2

)
moves (forward Metropolis algorithm [17]), in

O
(
N2 logN

)
steps (lifted forward Metropolis algorithm

and ECMC [17, 18]) and even O
(
N2
)

single moves with
a re-labeling ECMC [18].

The lifted forward Metropolis algorithm in continuous
space with infinitesimal movements constitutes ECMC.
For hard spheres, it is deterministic without restarts, but
then mixes in O

(
N2 logN

)
steps at randomized stop-

ping times [18]. Although ECMC is irreversible under a
transformation of the time t 7→ −t, under the combined
transformation of times and positions (t, x) 7→ (−t,−x),
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the dynamics runs backwards in time. The irreducibility
of the lifted forward Metropolis algorithm can be shown
using this time-reversal property. It may also explain
why ECMC is typically as fast as MD.

Previous work has also explored the autocorrelation
times (rather than the mixing times) under ECMC dy-
namics in the D-dimensional harmonic-solid model, of
which the equilibrium properties can also be obtained
exactly (see [21]). In 1D, the dynamic exponent of the
autocorrelations under ECMC dynamics takes the strik-
ingly low value of z = 1/2, corresponding to an equilib-
rium autocorrelation time involving O(N3/2) moves or
τ ∼ O(N1/2) sweeps. This is N1/2 times smaller (faster)
than the best autocorrelation time found in the hard-
sphere system.

The present paper starts from the similarity between
the dynamics of the 1D harmonic-solid model and that
of the Lennard-Jones model at low temperature T . We
generalize this favorable scaling of the harmonic model
to all T in the Lennard-Jones model as well as the hard-
sphere model. We expect that this concept can also be
generalized for higher-dimensional models [22, 23].

B. 1D particle systems, algorithms

We consider a 1D system of N particles i ∈ {1, . . . , N}
with xi < xi+1 on an interval of length L with peri-
odic boundary conditions in N and in L. In the re-
versible local Metropolis algorithm, at each iteration,
a randomly chosen particle i is proposed to move as
xi → xi + ran[−ε, ε], where ran is a random number uni-
formly distributed between −ε and ε. For hard spheres,
the move is accepted if the new sphere position does not
lead to overlaps with spheres i− 1 and i+ 1, and in ad-
dition does not induce a change of the ordering. In the
presence of a potential U , the move is accepted with prob-
ability min(1, exp(−∆U/T )), where ∆U is the change in
potential for the proposed move. The amplitude ε is cho-
sen to maximize the speed of the method. In the heat-
bath algorithm the distribution of the particle i is fully
resampled in the potential of its neighbors at each time
step.

ECMC, for one-dimensional hard spheres [9, 17], con-
sists in moving spheres in a chain-like manner. Up to
a restart time, sphere i moves with unit velocity until
it collides with sphere i + 1, at which moment it stops,
and sphere i + 1 moves forward. For each of the sub-
sequent “chains” (the displacements between restarts),
the starting sphere is randomly chosen, and the length
of the chain (the time until the next restart) is sampled
from a distribution on the length scale L. For a more
general interaction potential, ECMC breaks up the to-
tal system potential up into separate “factor potentials”,
each of which is treated independently [10, 24]. A factor
potential provides for a randomized stopping time. For
a given move involving particle i, the smallest stopping
time of all factors provides the next event time. The next

particle to move is determined through a lifting scheme
[22, 25] from the factor triggering the event. With po-
tentials more general than hard spheres, restarts are no
longer required to ensure irreducibility of ECMC.

In ECMC, path statistics in equilibrium and pressure
P are linked by

P/T ∝ 1

t

〈
xi(t) − xi(0)

〉
, (1)

where xi(t) is the position of the particle that is active at
time t [10, eq.(20)]. Eq. (1) holds for all time intervals t.
It is very convenient as an unbiased estimator of the pres-
sure, and has been much used [13]. The factor fields of
the present paper will allow us to exactly compensate the
pressure without affecting the physical properties of the
system, and lead to greatly accelerated ECMC methods.

In many-particle simulations, MD algorithms generally
feature smaller relaxation time scales than MCMC meth-
ods. In essence this is because momentum conservation
(present in MD, but absent in MCMC) allows for faster
transport of inhomogeneities in the velocity and position
fields ([26, 27]). In our comparisons with ECMC, MD
simulations are performed using the leapfrog or Verlet
algorithm coupled to a Langevin thermostat for the ve-
locity. The integration time step δt is adjusted by finding
the stability limit of the integrator, then reducing δt by
an order of magnitude. Inverse error analysis shows that
the effective Hamiltonian is close to that of the original
model, with a systematic shift of O(δt2) in the effective
Hamiltonian [28]. We choose the strength of coupling to
the Langevin thermostat so that the longest wavelength
mode is close to critically damped.

We concentrate our measurements on the dynamics of
the structure factor of the lowest Fourier coefficient

S(q) =
1

N

∣∣∣∣∣∣
N∑
j=1

eiq·xj

∣∣∣∣∣∣
2

, (2)

with q = 2π/L, which is sensitive to large-scale motion
of particles. The integrated autocorrelation times τ of
S( 2π

L ) are measured in “sweeps”, that is, a constant time
interval for all N particles in MD, N attempted displace-
ments in MCMC, or N events in ECMC (in comparing
the methods, we compensate for the different implemen-
tation speeds of a sweep in MD, MCMC, ECMC). We
use the blocking method [29] to quantify the algorithm
speed.

C. ECMC for harmonic interactions

We first consider a harmonic potential with a minimum
at a separation b between neighboring particles:

Uharm(xi+1 − xi; b) =
k

2
[(xi+1 − xi)− b]2 , (3)

where periodic boundary conditions for the particle sep-
aration xi+1 − xi are taken. They are also implied for
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the particle indices. The total potential of the system of
a fixed length L is

Uharm({xi}; b) =
k

2

N∑
i=1

(xi+1 − xi − b)2 (4)

=Uharm({xi}; 0)− kbL+
1

2
Nkb2, (5)

where periodic boundary conditions in N and L are again
understood. Because of the periodic boundary condi-
tions, the choice of the equilibrium separation b sim-
ply shifts the ground-state potential, without changing
the stationary distribution and equilibrium correlations.
Nevertheless, the ground-state potential is dependent on
L and it determines some thermodynamic properties,
such as the pressure:

Pharm(b) = k(b− L/N). (6)

The system with b = L/N satisfies Pharm = 0.
In a periodic system, MD and the reversible Metropo-

lis algorithm are strictly independent of b, as they only
rely on the forces (identical derivatives of eqs (4) and (5)
with respect to the xi) or potential differences between
configurations. However, the explicit form of the pairwise
interaction influences the ECMC dynamics, as the factor
potentials are treated independently. One such factor
potential may thus contain the single term Uharm(xi+1−
xi; b) with its explicit dependence on b. In the following
we consider such factors between all neighboring pairs of
particles. For b = 0, the harmonic interactions on parti-
cle i from its neighbors is attractive if xi−1 < xi < xi+1.
It implies that for an active particle i with a positive dis-
placement, the particle i− 1 is likely to trigger the next
event in ECMC (and to be the next active particle) (see
Fig. 1a). The displacement δx per event is:

δx ∼ T

k(L/N − b)
, if T � k

2
(L/N − b)2. (7)

As b increases, the triggering probability is less biased
and the displacement gets larger, and eventually reaches
the maximum:

δx ∼
√

2T

k
, when b = L/N, (8)

with symmetric triggering probabilities in both directions
(see Fig. 1c).

At low T , the displacement per event in eq. (7) is much
smaller than that in eq. (8). We expect that the case
b = L/N leads to larger amplitude movements of the ac-
tive particle i, at the same time the transfer of activity is
equally often toward i+ 1 and toward i− 1, and charac-
terizes the detailed ECMC dynamics. The case b = L/N
indeed gives rise to the exceptionally fast dynamics, char-
acterized by z = 1/2 [21]. The aim of the present paper is
to generalize this fast relaxation to arbitrary potentials.

FIG. 1. ECMC dynamics in the harmonic model. Particle i is
active, and the red and blue curves indicate the interactions
with particles i − 1 and i + 1, respectively. The proposed
moves are indicated by solid colored arrows, with respect to
the temperature T (vertical dashed lines). a: For b = L/N ,
the interractions with particles i − 1 and i + 1 overlap. b:
For b = L/(2N), the potential with i − 1 proposes a smaller
displacement than i + 1. Particle i − 1 is more likely to be
activated. c: For b = 0, the moves proposed by i− 1 and by
i+ 1 are balanced.

II. LINEAR LENNARD-JONES MODEL WITH
ECMC

We study now the Lennard-Jones potential

ULJ(r) =
1

r12
− 1

r6
, (9)

where r = xi+1−xi, with periodic booundary conditions.
The minimum is ULJ(rmin) = −1/4 for rmin = 21/6,
which sets a typical potential scale of the system ε =
|ULJ(rmin)|. In previous work [22] we proposed multiple
factor sets within ECMC. Here we take into considera-
tion two distinct factor setsMLJ andM6+12: the former
groups the terms 1/r6 and 1/r12 into a single Lennard-
Jones factor, while the latter treats them separately as
two factors which independently trigger events.

As the particles always move in the positive direction
(xi is always increasing), the active particle i, with the
factor set M6+12, will either trigger the particle (i + 1)
by the repulsive contribution 1/r12 or the particle (i −
1) by the attractive contribution 1/r6. The factor set
MLJ can lead to a trigger from (i + 1) or (i − 1) since
the Lennard-Jones interaction has both increasing and
decreasing branches.

In the following, we will show that the large-scale dy-
namics of ECMC are very sensitive to the choice of factor
sets, even if all choices lead to the same equilibrium state.
Good choices are crucial in the creation of efficient algo-
rithms.
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A. Simulations of 1D Lennard-Jones models

We simulate a slightly compressed (P > 0) linear
Lennard-Jones model with periodic boundary conditions
with average separation between particles equal to ∆ =
1.06 < rmin and use the reversible local Metropolis
MCMC method, MD, as well as ECMC with the factor
set MLJ (see Fig. 2a). Metropolis MCMC is asymptot-
ically the slowest method for N → ∞: the autocorre-
lation time (measured in sweeps) increases as Nz with
z = 2 characteristic of the diffusion of density fluctu-
ations. MD is better behaved, due to the propagative
compressional waves which more efficiently sample long-
wavelength modes. MD is however disadvantaged by the
necessity of using a small integration time step δt to sta-
bly explore the dynamics. The result from ECMC is very
favorable, we see a low dynamic exponent (z = 1) com-
bined with a small prefactor in the scaling: the algorithm
makes a large leap (without systematic errors) for each
iteration.

However, ECMC can also be less efficient than MD,
in certain implementations (see Fig. 2b). Here we use
the factor set M6+12, at low T . Here an analogous phe-
nomenon occurs to that displayed in Fig. 1, in a form
which is amplified by the splitting of the 1/r6 and 1/r12

contributions to the potential. The algorithm advances
with the use of steps which are too small to efficiently
explore the local environment. This slowdown of ECMC
at low T was pointed out previously [30]. We now study
analytically the Lennard-Jones interaction in eq. (9) at
low T , and make contact with the harmonic model in
order to eliminate this slowdown.
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FIG. 2. Equilibrium autocorrelation times τ vs. system size
N , for the 1D periodic Lennard-Jones model. Reversible lo-
cal Markov-chain dynamics, ECMC with restarts and MD. a:
T/ε = 10, combined factors, MLJ . b: T/ε = 0.1, separate
factors, M6+12. Scalings τ ∼ N and τ ∼ N2 are indicated
with dotted lines.

A straightforward expansion of the potential ULJ(r) of
eq. (9) to second order around a generic position r = ∆

102
100

101

102

103

104

105

106

Metropolis

ECMC no-restart

ECMC restart

a T/ =10
T/ =0.01

10-2 100
100

101

bbb

FIG. 3. Equilibrium autocorrelation timess τ vs. system size
N , for the 1D periodic Lennard-Jones system with factor
fields. a: Reversible local Metropolis dynamics and ECMC
with and without restarts, at high T , T/ε = 10 and low T ,

T/ε = 0.01. Scalings τ ∼ N1/2, τ ∼ N , and τ ∼ N2 are
indicated with dotted lines. b: Pressure P (T ) and its T → 0
limit (see eq. (13)).

yields

ULJ(r) = ULJ(∆)− hLJ(∆)(r −∆) (10)

+
1

2
kLJ(∆)(r −∆)

2
+ . . . . (11)

This validates the (obvious) fact that the 1D Lennard-
Jones model, in the limit T → 0, is described by a har-
monic model with, in analogy to eq. (5), a “stiffness”

1

2
kLJ(∆) =

(
78

∆14
− 21

∆8

)
(12)

and a linear coefficient

hLJ(∆) = −6(−2 + ∆6)/∆13. (13)

Summed over the N pairs (i, i+1) (with periodic bound-
ary conditions), the constant (ULJ(∆)) and the first-order
term in eq. (11) are without incidence on the constant-
volume thermodynamics and the stationary distribution.

Analogously to eq. (5), we may add a temperature-
dependent factor-field interaction

U fact
LJ = hfactLJ (T )

N∑
i=1

(xi+1 − xi) (14)

to the total Lennard-Jones potential
∑
i ULJ(xi+1 − xi).

The model defined by ULJ +U fact
LJ differs from the model

given by ULJ alone (in the presence of periodic boundary
conditions), as the two have different pressures. Nev-
ertheless, the samples obtained from the two associated
Boltzmann distributions are the same, and therefore also
all probability distributions and correlation functions at
constant L. We choose a factor field to exactly compen-
sate the linear term in the interaction in the limit T → 0:

hfactLJ (T ) = hLJ(∆) (for small T ). (15)
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This clearly eliminates the inefficiencies of ECMC at low
temperatures. In the model defined by eq. (15), the pres-
sure P vanishes as T → 0. Because of the connection
between the pressure and the path statistics expressed
in eq. (1), the ECMC trajectories are then without a
drift term, and the expected displacement vanishes. As
we now confirm numerically, we can speed up ECMC at
arbitrary T by adopting a factor potential that exactly
compensates for P .

We start by performing a set of short simulations to
measure P from eq. (1) (see Fig. 3b). The function P (T ),
thus obtained, recovers the T → 0 limit. We then fix the
value of the factor field in longer simulations to charac-
terize the dynamics (see Fig. 3a). Indeed, both at low
and at high T , ECMC remains efficient, and the dynami-
cal exponent z = 1/2 corresponds to the harmonic model
for b = L/N . This was tested for temperatures as high as
T/ε = 10 where the interactions for Lennard-Jones par-
ticles are dominated by the short-ranged repulsive core.
The ansatz hfact = P for the factor field thus holds at
temperatures at which the harmonic approximation of
the potential no longer applies. Maximum efficiency is
found for ECMC without restarts only: restarting the
chain after ∼ N events leads to a larger dynamic expo-
nent.

For the Lennard-Jones system, ECMC with factor
fields requires finding roots to the equations

1

r12
− 1

r6
± Pr = ∆U. (16)

We use the iterative Halley method [31], a higher-order
generalization of Newton’s method. It has the advantage
of stability when starting an iteration near a stationary
point of the function eq. (16). We start the iteration with
a guess obtained with one of two methods. For small
∆E we make a harmonic approximation to the left-hand
side of eq. (16). For large ∆E, the starting point is ap-
proximated as a root to the equation 1/r12 = ∆E. The
iteration converges to machine precision within three it-
erations. The relative speeds shown in Fig. 3a account
for this slow, iterative step through an appropriate pro-
portionality factor for each algorithm. Alternatives to
root finding may including thinning methods (as used in
the cell-veto algorithm [32]) which compare rates derived
from eq. (16) to an analytically tractable bound.

B. Extensions: Alternative factor sets

ECMC allows for many other choices for factors and
also for lifting schemes. We may generalize the factor
field method to the M6+12 factor set by introducing
one factor field each for 1/r6 and for 1/r12 interactions
(checking the convergence of the method for multiple cor-
relation functions), but we did not explore fully the opti-
mal choice of the two factor fields. We also studied factor
sets which contain all the interactions of the model. This

scheme is particularly interesting because the active par-
ticle i simultaneously explores the potential due to both
i − 1 and i + 1, without the need for an explicit factor
field. Again, this scheme uses an iterative solver. The full
system factors also require a more sophisticated lifting
scheme – generalizations of the “inside first” and “out-
side first” methods [22]. Particles with positive factor
derivatives and particles with negative factor derivative
are aligned in index order (see for instance [22, Fig. 10]).
The lifting dynamics corresponds to the alignment of fac-
tors vertically. In such schemes, factors contain O (N)
terms. Efficient alignment of the lifting diagram requires
the use of a tree structure for bookkeeping with an effort
O (log(N)). We found this method however to be less ef-
ficient than the factor field, and so do not report further
on speed measurements.

III. FACTOR FIELDS FOR 1D HARD SPHERES

FIG. 4. ECMC dynamics with factor fields (indicated by in-
clined straight lines) for 1D hard spheres. The moves of the
active sphere i proposed by the factors with i+1 and i−1 are
indicated by horizontal arrows and dashed sphere positions.
In the optimal dynamics, the slopes of the factor fields equal
±P in eq. (17).

To illustrate the generality of factor fields, we now
consider their application to the 1D hard-sphere model,
where the potential can no longer be expanded as a power
series (as in eq. (11)). Nevertheless, the model has a
well-defined pressure, that is computed from the parti-

tion function Z = (L−Nσ)
N

. This gives for the free en-
ergy, at temperature T , F = −T logZ = −NT logLfree,
with Lfree = L−Nσ and therefore [33]

P =
NT

Lfree
. (17)

A. Implementation, autocorrelation times

The implementation of ECMC with factor fields for
hard spheres does not require numerical root finding: an
active particle i, moving to the right, generates two pos-
sible events, a hard-sphere collision with the particle i+1
or else a trigger due to the factor field of particle i − 1
(see Fig. 4). The latter path length is sampled from an
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exponential distribution

ρ(x) =
P

T
e−xP/T . (18)

The smaller of the two proposed displacements yields the
next event, and it defines the lifting, as the new active
particle is the one that has triggered the event. Irre-
ducibility is guaranteed in the dynamics with an infinite
event chain, and restarts are no longer needed, unlike for
hard-sphere ECMC without the factor field.

We study the autocorrelation time in sweeps (see
Fig. 5a) and compare with the reversible local Metropo-
lis algorithm as well as ECMC without a factor field.
Again, we note the acceleration brought by the addition
of a factor field with a dynamic exponent z = 1/2, just
as for the linear Lennard-Jones and the harmonic mod-
els. Non-optimal factor fields slow down the dynamics of
the longest wavelength modes, an effect which becomes
stronger for larger N (see Fig. 5b).
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FIG. 5. Autocorrelation time τ (in sweeps) for 1D hard
spheres. a: Reversible local Metropolis MCMC, ECMC
(with restarts) and without factor field and ECMC (without

restarts) with optimal factor field, hfact. Scalings τ ∼ N1/2,
τ ∼ N , and τ ∼ N2 are indicated with dotted lines. b: τ
from ECMC vs. factor field (ECMC, without restarts).

B. Evaluation of mixing times

We have so far considered the equilibrium autocorrela-
tion time, which is only one of the two relevant measures
for the speed of an algorithm; it measures the time to
move from one configuration (taken in equilibrium) to
another independent one. The mixing time, in contrast,
considers the time it takes to reach a first equilibrium
configuration from an arbitrary non-equilibrium state.
The scaling with N of the equilibrium autocorrelation
time and of the mixing time differs for many MCMC
algorithms in 1D particle systems (see [2] for a mathe-
matical discussion of mixing times and equilibrium auto-
correlation times, and [18] for a discussion in the context
of ECMC.)

To determine the mixing time for the hard-sphere
model with factor fields, we use a discretized version of
the smallest Fourier coefficient of the structure factor in
eq. (2), namely the variance var(w) of the “half-system
distance”

w = xi+N/2 − xi −Nσ/2 (19)

from a compact initial configuration [17] where var(w) ∝
N2 to the (exactly known) equilibrium value, which is
∝ N . Tracking the variance signals a mixing time very
close to N sweeps, a value that we conjecture to be
exact (see Fig. 6). This is a faster scaling than the
O (N logN) sweep mixing-time behavior of ECMC with
restarts (without factor field) [18].

Relaxation occurs in the following manner from a com-
pact configuration: First, the active particle is driven
to the right end of the system which over-relaxes (see
Fig. 6). This drives the activity back into the bulk, to
the boundary with the compact interior. A series of cy-
cles of increasing amplitude relaxes the end of the system
with penetration into the compact region following a law
in
√
t. We note that the mixing time is longer than the

equilibrium autocorrelation time (see the discussion in
Section IV).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
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FIG. 6. Variance of the half-system distance w (see eq. (19))
vs. time for various N (hard-sphere model with factor fields
(without restarts)). The observable relaxes to its equilibrium
value at the mixing time (1.000 ± 0.005) × N sweeps for the
hard-sphere model with factor fields (without restarts).

IV. ACTIVE-PARTICLE DYNAMICS

The choice of factor fields, even if it is without in-
cidence on spatial correlation functions and thermody-
namic properties at constant L, strongly influences the
ECMC dynamics. In this section, we consider the large-
scale motion of the particle i(t) that is active at time t, in
order to probe how the exponent z = 1/2 arises from the
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FIG. 7. Position xi of the active sphere i vs. time t
(N = 4096, σ = L/(2N)). At t = 0, the interval [−L/2, 0] is
close packed, the interval [0, L/2] is empty. The physical ex-
tent expands through oscillations, growing as

√
t, and reaches

[x1, xN ] ' L at t ' N . The inset illustrates the position of xi
(without periodic wrapping) on a larger time interval.

local active-particle dynamics. It is convenient to take
into consideration discrete “event times” s = 0, 1, 2, . . . ,
rather than the continuous time t of the Markov process.
Because of the ordering of indices, we have i(s+1) = i±1,
with “event steps” u(s) as i(s + 1) = i(s) + u(s) and
u(s) ∈ {−1, 1}. It follows from eq. (1) that 〈u〉 > 0
and 〈u〉 < 0 for P > 0 and P < 0, respectively, which
means that the ECMC trajectory is described by a for-
ward drift (for P > 0) or a backward drift (for P < 0).
With a factor field equal to P , the drift terms vanish, and
ECMC trajectories feature positive and negative event
steps (liftings i(s+ 1) = i(s) + 1 and i(s+ 1) = i(s)− 1)
with equal probabilities [34]. To better characterize the
time series u(s) in this case, for both hard spheres and
Lennard-Jones particles, we compute the event-step au-
tocorrelation 〈u(0)u(s)〉 (see Fig. 8). We find that for
large N , the autocorrelation decays as a power law:

〈u(0)u(s)〉 ∼ s−γ . (20)

(This scaling applies on times shorter than those required
to explore the whole system. On longer time scales the
correlation in eq. (20) decays exponentially.)

The active particle at event time s (without periodic
wrapping) is given by

i(s) = i(s = 0) +

s∑
s′=1

u(s′). (21)

We now follow a trajectory which starts with i(s =
0) = 0. For vanishing long-range correlations in the
event steps u(s), the motion of the activity, character-
ized by the second moment of i(s), would be diffusive
(
〈
i2(s)

〉
∼ s. Rather, we find for large s, using eq. (20)

with γ < 1:

〈
i2(s)

〉
=

s∑
s′=1

s∑
s′′=1

〈u(s′)u(s′′)〉 ∼ s2−γ . (22)

The position of the active particle is thus characterized
by super-diffusive behavior. The observed value γ = 2/3
(see Fig. 8) implies〈

i2
〉
∼ s4/3 or |i| ∼ s2/3. (23)

The dynamics of the active particle has long-time mem-
ory for N →∞. The trajectories contain long runs sep-
arated by changes of the direction of motion, so that the
average motion is undirected, as required by eq. (1).

FIG. 8. Equilibrium autocorrelation of event steps u ∈
{−1, 1} with event time s for ECMC with factor field (no
restarts). a: 1D Lennard-Jones model shows monotonic de-
cay. b: 1D hard spheres display oscillatory behavior with a
power-law envelope. The scaling 〈u(0)u(s)〉 ∼ s−2/3 is indi-
cated with dotted lines (see eq. (20)).

A. Scaling for the active-particle dynamics

The discrete event time s = 0, 1, 2, . . . grows with the
time t of the Markov process (that we measure in sweeps)
as s ∝ Nt. The same argument applies to the autocor-
relation event time, in events, and the autocorrelation
time τ , in sweeps, sauto ∝ Nτ(N). The super-diffusive
motion constrains the dynamic exponent z which relates
complexity to system size:

sauto ∼ N (1+z). (24)

A configuration can decorrelate from its previous history
only if the super-diffusive walk visits each sphere at least
once. Thus we require:

|i(τ)| ∼ sauto1−γ/2 ∼ N (1+z)(1−γ/2) ≥ N, (25)
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implying that z ≥ γ/(2 − γ). If we take γ = 2/3, we
find z ≥ 1/2 compatible with the autocorrelation scaling
reported previously for the harmonic model [18], and also
compatible with the data in Figs 2 and 5.

A supplementary physical hypothesis of perfect local
equilibration during the ECMC motion leads to a definite
prediction for γ: the equalibrium fluctuations in particle
separation in a system section of length |i| increase as

∆xp ∼ |i|1/2. (26)

After s events the active label visits particles in a volume
|i| ∼ s1−γ/2, so that on average each particle moves

∆xγ =
s

|i|
∼ sγ/2 ∼ |i|γ/(2−γ) (27)

times. If we assume that the motion of the particles
is comparable to that required to resample the internal
states of the section of length |i| we find ∆xp ∼ ∆xγ so
that γ = 2/3, and z = 1/2.

For this mechanism to work, the correlated random
motion of the active particle must behave in a special
way: both the mean and the standard deviation of the
distribution of ∆xγ must have identical scaling with s.
(If only the mean increases the spheres will be displaced
uniformly without re-equilibrating the internal degrees of
freedom.)

B. Active-particle return probabilities

The distribution of eq. (27)) allows for a rapid decay
of autocorrelation functions. We consider the dynamics
of a particle which is active at time s = 0. This particle
can only move forward a large distance if the active label
returns to it frequently, that is, if for many times s, one
has i(s) = i(s = 0). We thus study in greater detail the
returns to the origin of the active label, in the presence
of factor fields.

We generate an equilibrated configuration of the
Lennard-Jones system and from the signal i(s) calculate
the distribution of the number n of returns to the ori-
gin within s events (see Fig. 9). For Brownian walks of
length s, n is related to the “local time” [35, 36], and the
local-time distribution p(n, s) is half-gaussian defined for
n > 0. In ECMC, the probability p(n, s) of returns of
the active-particle label to the origin (which gives the
number of forward steps) is also maximum at zero, and
decays monotonically with n. The mean and standard
deviation of the number of steps drawn from such a
distribution grow in the same way with s (see inset of
Fig. 9). Even though the whole system moves forward
in an ECMC simulation the dynamics is spatially hetero-
geneous. Widely separated particles move forward with
different numbers of steps so that the internal modes of
the system are efficiently resampled as is needed for the
ansatz in eq. (27) to apply.
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FIG. 9. ECMC with factor fields for a 1D Lennard-Jones
system (N = 8192, T/ε = 1). Probability p(n, s) to return
n times to the original active particle during s events (for
s = 2500 and s = 10000). Mean and standard deviation of

p(n, s) both grow as sγ/2 ∼ s1/3 (see eq. (27)). Inset: data

collapse using scaling variables p(n, s)s1/3 vs. n/s1/3.

V. CONCLUSIONS

We have compared in detail the dynamics of three sim-
ulation methods (reversible MCMC, MD and ECMC)
for 1D systems with local interactions. We have shown
that in many situations ECMC displays the same dy-
namic scaling (z = 1) as molecular dynamics. Both are
asymptotically faster than the diffusive behavior found in
MCMC (z = 2). With a good choice of factors, ECMC
is much faster than MD, since it does not need to use
a small integration time step to stably explore config-
urations. Furthermore, unlike MD, ECMC is exact to
machine precision, as it is free from time-discretization
errors.

Generalizing from the 1D harmonic model, we map
1D systems onto thermodynamically equivalent systems
at zero pressure with periodic boundary conditions. This
leads to further acceleration of ECMC for both smooth
and discontinuous potentials. We have found in this case
a remarkably low dynamic exponent (z = 1/2), better
than MD. This acceleration is associated with a mod-
ification of the dynamics of the event steps (as a con-
sequence of eq. (1)). Rather than displaying directed
motion, the signal i(s) becomes super-diffusive and op-
timally explores local density fluctuations, being driven
forward in regions of high density, and back in regions
of low density. A scaling hypothesis predicts a super-
diffusive law of the form 〈i2(s)〉 ∼ s4/3 for the dynamics
of the active label as well as an explanation for the emer-
gence of the exponent z = 1/2.

There is a clear interest in generalizing these results
to higher-dimensional models. Already a two and three-
dimensional harmonic model has been shown [18] to dis-
play accelerated convergence in the ECMC algorithm. In
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geometries which remain fixed, such as the XY model or
fixed harmonic networks (without disorder) it appears
possible to implement generalized factor fields. With
fluctuating neighbor relations, for instance in a fluid, the
generalization of factor fields will represent an interesting

challenge [37].
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